
Quantum Computing

Vincenzo Savona

Center for Quantum Science and Engineering, EPFL

December 24, 2024

Acknowledgements

I am deeply indebted to Khurshed Porous Fitter, who devoted his talent, time, and energy
to the deeply critical writing of these lecture notes, starting from a very crude draft and
my handwritten notes. Most of what is clear and insightful in this document is due to
him.

Contents

1 Introduction 5

2 A crash course on Quantum Mechanics 10
2.1 States . 11
2.2 Measurements . 13
2.3 Time evolution . 18
2.4 Composite systems . 19
2.5 The Quantum Bit . 19

2.5.1 Pauli Basis . 20
2.5.2 The Bloch Sphere . 20
2.5.3 A brief discourse on measurement . 21
2.5.4 Multiple Qubits . 21

3 The paradigm of digital Quantum Computation 23
3.1 Quantum gates . 24

3.1.1 Single-qubit gates . 24
3.1.2 Some useful theorems . 25
3.1.3 Quantum circuit notation . 26
3.1.4 Two-qubit gates . 27
3.1.5 Universal gates . 29

3.2 Quantum state preparation . 32
3.2.1 Bell states . 33

3.3 Readout . 33
3.3.1 Principle of deferred measurement . 35
3.3.2 Principle of implicit measurement . 35

2

3 Contents

4 Quantum Algorithms 38
4.1 Quantum algorithms and quantum advantage 38
4.2 The Deutsch algorithm . 38
4.3 The Deutsch-Jozsa algorithm . 40

5 Computational Complexity 44
5.1 Computational complexity . 44

5.1.1 Classical computational complexity 44
5.2 Classical deterministic complexity classes 45

5.2.1 Tractability . 45
5.2.2 P . 46
5.2.3 NP . 46
5.2.4 NP-Complete . 46
5.2.5 NP-Hard . 47

5.3 Probabilistic computational complexity classes 48
5.3.1 BPP . 48
5.3.2 MA . 49
5.3.3 Summary . 50

5.4 Quantum Computational Complexity . 51
5.4.1 BQP . 51
5.4.2 QMA . 52

5.5 Oracle separation . 52
5.5.1 Bernstein-Vazirani . 53
5.5.2 Simon’s Algorithm . 53

6 Quantum Fourier Space 55
6.1 The quantum Fourier transform . 55

6.1.1 The binarized decimal notation . 57
6.1.2 The QFT circuit . 58

6.2 Quantum phase estimation . 63

7 Shor’s Factoring Algorithm 67
7.1 Shor’s Factoring Algorithm . 67
7.2 Order Finding . 68
7.3 Modular exponentiation . 70
7.4 Link Between Order Finding and Factoring 71
7.5 The Algorithm is Then Simple . 71
7.6 Why the Algorithm Works . 72

8 Grover’s Algorithm 73
8.1 Grover’s Quantum Search Algorithm . 73

8.1.1 The Algorithm . 74
8.1.2 Geometrical Interpretation of Grover’s Algorithm 75
8.1.3 Number of Applications and Probability Analysis 76

9 Digital Quantum Simulation 78
9.1 Time-Evolution Operator with Discretized Time Steps 78
9.2 Zassenhaus Formula . 78
9.3 Suzuki-Trotter Decomposition . 79

Contents 4

9.4 Quantum Circuit Implementation . 80

10 The Density Operator Formalism 81
10.1 The density operator formalism . 81

10.1.1 Time evolution of the density operator 86
10.1.2 Noisy quantum channels . 88

11 Quantum Error Correction 91
11.1 Quantum error correction . 91
11.2 Repetition codes . 92
11.3 Knill-Laflamme Theorem . 95

11.3.1 Proof and Discussion . 95
11.4 Bounds on the Parameters of a QECC . 97
11.5 The Stabilizer Formalism . 98

11.5.1 Steane code . 103
11.5.2 Calderbank-Shor-Steane code . 103

12 Fault Tolerant Quantum Computing 104
12.1 Fault Tolerance . 104
12.2 Clifford group . 104
12.3 Gottesman-Knill Theorem . 105
12.4 Fault Tolerance in Gates, State Prep., and Measurement 105
12.5 Transversal gates . 106
12.6 Quantum Threshold Theorems . 108

13 The Variational Quantum Eigensolver 112
13.1 Variational Quantum Algorithms (VQA) 112
13.2 The Variational Quantum Eigensolver (VQE) 113

13.2.1 Energy Estimation . 115
13.2.2 The Optimization Process . 116

14 The Quantum Approximate Optimization Algorithm 119
14.1 Quantum Approximate Optimization Algorithm 119
14.2 QAOA on a digital quantum computer . 121
14.3 Max-Cut . 123

Chapter 1

Introduction

What is Quantum Computing?
In October 2019, Google announced they reached quantum supremacy. In short, they
managed to employ a programmable and (rather) general-purpose quantum device to
execute a computational task in a matter of minutes, which would take years on a con-
ventional modern supercomputer.1

The goal of this course is to develop the knowledge required to fully understand the
extent and implications of this ground-breaking result, as well as explore the possibilities
and opportunities that quantum computing opens in all areas of science and society.
Hopefully, it will also raise your awareness about the rapidly developing world of quantum
computing and give you the tools to critically assess the enormous flow of news and
information about progress in quantum science, to which we are exposed every day in
the media.

Where does it originate?
The idea of quantum information and quantum computing emerged at the beginning of
the 80’s, particularly through the visionary work of Richard Feynman. It was already
known at the time that simulating the evolution of a many-body system according to the
laws of quantum mechanics, using a traditional (i.e. classical, as opposed to quantum)
computer, is a computationally hard task. By “hard” here, I mean that the time it
takes for the best-known algorithm increases exponentially with the “size” of the system,
which may be defined here as the number of particles or the degrees of freedom. Such

1See the original research article. IBM soon rebutted Google’s estimate by arguing that a better usage
of mass storage would reduce the computational time to a few days, but this is not the point. The point is
that a quantum computer could outperform the biggest available classical computers on a programmable
task. Later, the quantum advantage was again demonstrated on the 66-qubit Chinese quantum processor
Zuchongzhi 2.1 by performing a computational task that is non-treatable on a modern supercomputer
even when accounting for IBM’s improved algorithmic solutions. Very recently, the methodology used in
these two works to assess quantum supremacy was proven to be flawed. This debate, strongly rooted in
the laws and predictions of quantum mechanics, shows how difficult it is even only to assess the usefulness
of a quantum computer, and how the notions and concepts treated in this course will be useful to gain
a critical look on this rapidly evolving field.

5

https://www.nature.com/articles/s41586-019-1666-5
https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/
https://arxiv.org/abs/2109.03494
https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.5.010334

Chapter 1: Introduction 6

exponential scaling of the run time makes the problem virtually non-treatable. This
was commonly seen as a limitation in our capacity to model complex quantum systems.
Thinking out of the box, Richard Feynman reversed the argument and saw this as an
opportunity instead. If I want to simulate a quantum system of size N , evolving over a
time t, a classical computer will take some time TN ∼ O(2N). If I now want to simulate a
system of the same kind but twice as large, the classical computer will take a time T2N ∼
O((2N)2) which is exponentially larger than TN . Nature, on the other hand, per definition,
will always take the same time O(t), and therefore performs exponentially better than
any classical computer in this particular computational task! Hence, in 1982, Feynman
proposed the idea that a quantum system could be simulated efficiently using another
appropriately engineered quantum system, on which we may have more control. This
proposal marked the birth of the field of quantum simulation. In the same years, Feynman
collaborated with engineers to study the thermodynamics of computation. One of their
main conclusions was that, in order to achieve maximal thermodynamic efficiency (i.e.
dissipate the least possible amount of heat), electronic logical gates should be reversible,
namely, it should be possible to trace back the input from the output.2 The state of an
isolated quantum system evolves in time according to a unitary transformation (more
about this later), and this evolution is naturally reversible. From there, the idea of a
quantum computation paradigm based on quantum logic gates rapidly emerged.

A brief history
Major breakthroughs came with the development of the Deutsch (1985) and the Deutsch-
Jozsa quantum algorithms (1992). These algorithms showed for the first time that the
quantum computation paradigm not only could work as a computational protocol but
could also execute certain specific tasks with an exponential speedup with respect to any
classical algorithm. In 1994, Peter Shor devised the first useful quantum algorithm, able
to find prime factors of integers, with an exponential speedup compared to the best-
known classical algorithms. In 1996, Lov Grover set another milestone by devising an
algorithm to search unstructured databases with quadratic speedup as compared to the
best classical algorithm. From Shor’s and Grover’s algorithms on, the field of quantum
computing flourished, both theoretically and experimentally. In particular, a worldwide
experimental effort was undertaken to develop technological platforms and architectures
that could support quantum information.

It is very important to state at this point that the quantum computation paradigm is
not universally efficient. In other words, it is (by far!) not possible to devise quantum
algorithms to speed up any known computational tasks. Quantum computing is only
favorable to certain specific computational problems. A wide and rapidly expanding field
of research is, therefore, that of quantum software engineering, which aims at discovering
new tasks for which quantum computing is efficient, and to develop and optimize the
corresponding quantum algorithms.

Today’s most advanced quantum computers are based on three technologies, supercon-
ducting quantum circuits, trapped ions, and Rydberg atoms, while a fourth technology
employing solid-state spin qubits is emerging. All these technological solutions are af-
fected by errors induced by the interactions of the quantum device with its environment.

2This is not true of conventional logical gates such as AND, OR, and XOR.

7

The lowest error rates at the time of writing these notes are about 0.0013 error per elemen-
tary two-qubit quantum operation and 0.0001 error per elementary one-qubit operation.
John Preskill of Caltech has denoted current quantum devices as Noisy Intermediate-Scale
Quantum Hardware, or NISQ for short. As a comparison, in modern computer hardware,
the error rate is 10−10 errors per bit per hour. For most applications of conventional
computers, these errors are not corrected and result in almost no significant corruption
of data (most of them will likely affect one pixel of one frame of one video from your
last holiday). Although error rates in quantum hardware are much higher, one goal of
quantum computing is to develop a framework in which some computational tasks can
still be executed in the presence of errors and still lead to substantial results. This is
why today, the domain of quantum computing is broadly divided into two sub-domains:
fault-tolerant and non-fault-tolerant, a.k.a. NISQ, quantum computing.

Fault-tolerant quantum computing (unlike the name suggests) assumes that errors are
taken care of in some way, either through efficient hardware or by leveraging quantum
error correction codes. Therefore, when writing a quantum algorithm, one can assume
that the algorithm is executed by the quantum computer as is. This is the simplest case
and the one that we will learn first. After having introduced the basics, we will study the
most important fault-tolerant quantum algorithms, including the original version of Shor’s
factoring algorithm, Grover’s quantum search algorithm, the digital quantum simulation
algorithm (realizing Feynman’s original vision), and other important algorithms3.

Fault-tolerant quantum algorithms assume the existence of some kind of error correction
scheme. In this course, we will learn the basics of how errors in a quantum computer
occur, how they are modeled, and how they can be corrected. More specifically, we
will introduce the stabilizer formalism and study some simple stabilizer error-correction
codes, such as Shor’s error correction code. Stabilizer codes use redundancy by encoding
one logical qubit onto a set of N(> 1) physical qubits. The code makes it possible to
detect the occurrence of an error on a physical qubit through a quantum measurement of
an error syndrome while preserving the quantum information carried by the qubit.4 The
detected error can then be corrected by applying the corresponding inverse operation.
In a recent experiment on their Sycamore quantum processor, Google produced a proof
of principle of exponential error suppression in a quantum memory through quantum
error correction. Very recently, almost full quantum error correction protocols on a large
number of physical quantum bits were demonstrated by Google, Quantinuum, and QuEra,
using respectively the three mainstream quantum computing technologies.

In a real-world scenario, the processes of measuring an error syndrome and correcting
the detected error are themselves affected by errors. In addition, error syndromes cannot
be measured with arbitrarily high frequency. It may therefore happen that a quantum
algorithm executes one or few operations onto a faulty quantum memory before the
errors are detected and corrected. A legitimate question is whether we can make sure
that quantum errors can still be corrected with a reasonable computational overhead,
even while accounting for the fact that the error correction procedure is itself prone
to errors. This possibility is called fault tolerance. One of the major achievements of
quantum information in the last two decades is the proof that fault-tolerance is possible

3You have a rather comprehensive list at the Quantum Algorithm Zoo
4Preserving the quantum information is the nontrivial goal of these codes, as according to quan-

tum mechanics, any measurement on a quantum system modifies its state through the collapse of the
wavefunction.

https://www.nature.com/articles/s41586-021-03588-y
https://www.nature.com/articles/s41586-021-03588-y
https://arxiv.org/abs/2408.13687
https://arxiv.org/abs/2404.02280v2
https://www.nature.com/articles/s41586-023-06927-3
https://quantumalgorithmzoo.org/

Chapter 1: Introduction 8

within rather general assumptions, in particular under the assumption that errors occur
locally on one qubit – or at most on a few neighboring qubits – independently. In the
course, we will introduce the basic concepts related to fault tolerance and the challenges
posed by it. We will also discuss how errors can occur in physical realizations of quantum
architectures and how they can be modeled, both within the simplified digital error model
and with a more accurate description using the theory of open quantum systems.

Non-fault-tolerant quantum computing assumes that errors do occur during the execution
of a quantum algorithm and are not corrected. The algorithm must therefore be designed
to be resilient to errors in some way. There are two strategies to do so. First, the
algorithm should execute in a short number of elementary operations, i.e. be “shallow”.
If the error rate per operation is constant, a shallow enough algorithm may run with
zero or very few errors. Second, the outcome of the computation should be something
that can be statistically inferred by running the algorithm several times. Combined
together, these two strategies result in hybrid quantum algorithms, which alternate over
several cycles of (a) execution of a shallow quantum routine – which provides the actual
quantum speedup – and (b) a classical routine that processes the resulting data. Hybrid
algorithms conceived for current and near-future NISQ hardware hold great promise to
solve many problems in science, technology and society, ranging from quantum chemistry
simulations to material science, drug discovery, optimization problems in engineering, and
artificial intelligence, among others, with unprecedented efficiency. Here, we will provide
an overview of three of the most promising hybrid algorithms, namely the Variational
Quantum Eigensolver, for the simulation of ground and excited states – and thus of the
physical and chemical properties – of molecules and materials, the Quantum Approximate
Optimization Algorithm, for the search of approximate solutions of complex combinatorial
optimization problems, and the Variational Quantum Dynamics, to simulate the time-
evolution of many-body quantum systems.

When executing NISQ quantum algorithms, it is still possible to mitigate the effects
of errors on the result. The field of quantum error mitigation is rapidly expanding,
encompassing a variety of techniques to infer the effect of errors on the estimate of
specific output quantities using classical post-processing, in the attempt to extrapolate
what the result would be in the absence of errors. While error mitigation techniques
do not scale favorably with increasing size of the quantum computational task, they
still make it possible to push the performance of NISQ hardware to remarkable levels of
efficiency. An example is the recent result by IBM who achieved the digital simulation
of the dynamics of an interacting system of 127 spins using error mitigation. While
this result is a milestone in the quest for quantum advantage, it also spurred numerous
followup studies that were able to reproduce the computational task easily on a classical
computer, thanks to the use of advanced approximate techniques for the simulation of
many-body quantum systems.

Time permitting, at the end of the course, we will survey the most recent developments
in quantum computing.

This course will be strongly focused on the notion of digital quantum computing and
will not cover topics such as analog quantum computing, linear quantum computing,
measurement-based quantum computing, or quantum simulation. It will also not be a
general course on quantum information, therefore not covering the topics of quantum
communication and quantum sensing. Finally, as I am not an expert on the theory of

https://www.nature.com/articles/s41586-023-06096-3
https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.5.010308
https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.5.010308

9

classical or quantum computational complexity, I will address these notions in a minimal
fashion. Those who are interested in a more in-depth account of these topics may want to
read, for instance, the vast mole of work by Scott Aaronson – one of the world’s leading
experts on computational complexity and quantum computing.

https://www.scottaaronson.com/blog/

Chapter 2

A crash course on Quantum
Mechanics

Quantum Mechanics was developed between 1900 and 1925 as a revolutionary theory of
physical reality (the other revolution being relativity, developed around the same time).
It followed what is known as the catastrophe of classical physics. Classical physics,
i.e. Newtonian mechanics and Maxwell electrodynamics, were unable to explain several
phenomena and had some inconsistent physical predictions (black-body radiation, spectra
of atoms, photoelectric effect, etc.)

It required 25 years to be completed because it provides a completely new paradigm for the
description of the physical quantities and the laws governing time evolution. Naturally, to
develop a revolutionary paradigm of physics would mean to first incorporate and nurture
a completely novel way of thinking about physical phenomena. This, most of the time, is
quite counter-intuitive owing to the stark differences between the quantum and classical
theories of physics. In what follows, we will first motivate the need for quantum mechanics
and then summarize the key postulates.

In all pre-quantum (classical) physical theories, the focus was quite naturally the mathe-
matical description of physical observables (quantities we can measure in an experiment).
Newtonian mechanics of a point-particle established “equations of motion” describing
how the position, velocity, acceleration and further derivatives vary in time. Similarly,
it describes the motion of a rotating rigid body and Maxwell’s theory describes the dy-
namics of electric and magnetic fields (which can be measured directly using test charges
and dipoles). In a theory of physical reality before the 1900s there always existed a direct
mathematical description of the observables.

Sometimes there are too many observables and they generally obey very complicated and
complex dynamics. In this case, physicists resorted to statistical theories that laid the
probabilistic mathematical description of average thermodynalical quantities. Thermo-
dynamics describes average macroscopic quantities like pressure, volume, temperature
and energy. The Maxwell-Boltzmann distribution

f(v)d3v =
(m

2πkT

)3/2
exp

(
−mv

2

2kT

)
d3v (2.1)

is the probability distribution function (PDF) of the speed of molecules in a gas at equi-
librium, at a temperature T , per unit volume d3v in velocity the space. It tells you what

10

11 2.1 States

fraction of the molecules are on average moving at speed v (i.e. an observable). A similar
explanation can be provided for the Boltzmann equations describing the dynamics of
f(r, v)d3rd3v for a gas out of thermal equilibrium. Probabilities are naturally introduced
when we decide to give up most of the microscopic information and retain only statistical
averages. Nonetheless, we always work with a direct mathematical representation of the
observable quantities.

In quantum mechanics, this is no longer the case. Here, the state of a system–that
contains all the information about its properties at a given time–is described by a vector
in a quite abstract and (usually) infinite-dimensional vector space! We will soon learn
the essential characteristics of these vector spaces. Consequently, physical quantities or
observables are described by linear operators acting on these state vectors. This leads
to the natural question “What is the link between these quantum mechanical observables
and physically observable quantities?”. Or, considering a practical example, “How do we
use the quantum theory to predict the trajectory of a particle?”.

We will see that the link to observables is established in the third axiom, which is the
heart of the theory. More generally, quantum mechanics is an axiomatic theory, and
many efforts are continually made, even today, to lower the number of required axioms.
However, a reasonable question would be “Why work with a theory that seems to be so
strange and axiomatic?” Simply because, although axiomatic in nature, it is by far the
most successful physical theory in the history of mankind, with thousands of successful
predictions and not a single violation (with the exclusion of mechanics inside black holes,
but let’s forget about that here!). Here, for those of you who are not familiar with
quantum mechanics, we will introduce the minimal concepts required to understand and
practice (digital) quantum computing. Let’s get started!

2.1 States
The state of a quantum mechanical system is its most complete mathematical description.
The state is described by a vector in a Hilbert space.

Note: Throughout this course, states are pure states unless specified otherwise.

Vectors:
Dirac’s notation is a popular notation in quantum mechanics used to denote vectors. A
vector is denoted by a ket |ψ〉. What we write inside the ket |.〉 is just a symbol that
we use to index or name the vector. The set of all such symbols is called the index set
or alphabet of the vector space. The indices do not need to have precise mathematical
meanings, but they can.

Examples:

• The ket |1, 0, 0, 1, 1, 0, 0, 1〉 can describe the state of 8 qubits in a quantum computer.
For now, we can think of qubits as simple two-state systems, with possible states 0
or 1.

• The state of a cat who does not possess the strongest chances of survival can be
represented by the ket |(^.^)〉 for alive and the ket |(x.x)〉 for dead.

Chapter 2: A crash course on Quantum Mechanics 12

Vector spaces:
A vector space is a set of vectors closed under scalar multiplication and addition op-
erations. Formally, consider any two d-dimensional vectors |ψ〉 and |ϕ〉 from a vector
set V ⊆ F d. Then, V is a vector space if and only if all the linear combinations
α |ψ〉 + β |ϕ〉 ∈ V ∀ α, β ∈ F and ∀ |ψ〉 , |ϕ〉 ∈ V . In quantum mechanics, F = C
and d can also be infinite. However, in this course, we will deal with only finite values of
d, mainly powers of 2, that is, d = 2n for integers n ≥ 1.

Examples:

• The set of all position vectors |x, y, z〉, is the 3-dimensional Euclidean space R3.
More generally, any set of vectors |i〉 ∈ Cn.

• In addition to vectors, matrices also form vector spaces. The set of all m × n
matrices,Mm×n ∈ Cm × Cn forms a vector space.

For a given vector represented by a ket |ψ〉, we define its dual vector as a bra 〈ψ|.

Hilbert space:
A Hilbert space H is a special kind of vector space over the complex numbers C. It is a
vector space with an inner product (which is a generalization of the scalar product in the
Euclidean space).

Inner product:
We define the inner product between two vectors |ψ〉 and |ϕ〉 as a map from the Hilbert
space H to the set of all complex numbers C. That is, 〈ψ|ϕ〉 ∈ C ∀ |ψ〉 , |ϕ〉 ∈ H, with
the following properties:

1. Positivity: 〈ψ|ψ〉 > 0 for |ψ〉 6= 0

2. Linearity: 〈ϕ| (a |ψ1〉+ b |ψ2〉) = a 〈ϕ|ψ1〉+ b 〈ψ|ϕ2〉

3. Skew symmetry: 〈ϕ|ψ〉 = 〈ψ|ϕ〉∗

A Hilbert space is complete under the inner product induced norm ‖ |ψ〉 ‖ =
√
〈ψ|ψ〉.

Completeness means that it contains all limiting vectors of absolutely convergent series.
Complicated, but the good news is that this property is trivial for finite-dimensional
Hilbert spaces.

Remark: Generally, quantum mechanics is defined in infinite dimensional Hilbert spaces.
However, as we will see, finite-dimensional Hilbert spaces suffice to model and study
digital quantum computing. We can therefore forget about the notion of completeness
for the purpose of this course.

In a Hilbert spaceH of dimension d, we can define an orthonormal basis: {|ϕ1〉 , |ϕ2〉 , . . . , |ϕd〉}
such that 〈ϕj|ϕk〉 = δjk. The analogy in R3 are the three unit vectors x̂, ŷ, and ẑ. Using
this orthonormal basis, any vector |ψ〉 ∈ H can be expanded in terms of the basis as:

|ψ〉 =
d∑
j=1

cj |ϕj〉 ; cj = 〈ϕj|ψ〉 . (2.2)

It is important to notice that in quantum mechanics, the norm ‖ |ψ〉 ‖ =
√
〈ψ|ψ〉 of a

state does not play any role in the theory (since we normalize states). Consequently,

13 2.2 Measurements

we can describe states as rays, namely vectors |ψ〉 with unit norm ‖ |ψ〉 ‖ = 1. Also, a
global complex phase is not physically relevant: |ψ〉 and eια |ψ〉 are mathematically two
different vectors but represent the same physical state. This will be clearer once we cover
the measurement postulate.

Pay attention that this holds only for the overall phase factor eια on a vector. This means,
a |ϕ〉 + b |ψ〉 and a |ϕ〉 + eιαb |ψ〉 are not the same physical state but a |ϕ〉 + b |ψ〉 and
eια (a |ϕ〉+ b |ψ〉) are. Notice that if |ϕ〉 =

∑
j aj |ϕj〉 and |ψ〉 =

∑
j bj |ϕj〉 are expanded

in the orthonormal basis |ϕj〉, then the inner product can be expressed in terms of the
vector components aj and bj as 〈ϕ|ψ〉 =

∑d
j=1 a

∗
jbj.

Now, we shall describe operators, measurements and their properties governed by the
postulates of quantum mechanics.

2.2 Measurements
An observable is a property of a physical system that can be measured. In quantum
mechanics, observables are described by self-adjoint operators acting on the Hilbert space.
A linear operator Â, is a linear map taking vectors to vectors: |ψ〉 7→ Â |ψ〉 = |ϕ〉.
Linearity implies Â(a |ϕ〉 + b |ϕ〉) = aÂ |ϕ〉 + bÂ |ϕ〉. Also, trivial but important, for two
linear operators Â and B̂, the operator Ĉ = ÂB̂ is the linear operator resulting from the
application of B̂ first, then Â. That is, Ĉ |ψ〉 = ÂB̂ |ψ〉 ∀ |ψ〉 ∈ H ⇐⇒ Ĉ = ÂB̂.

The adjoint of an operator Â is denoted by Â† and is defined by its action as〈
ϕ
∣∣∣Âψ〉 =

〈
Â†ϕ

∣∣∣ψ〉 ∀ |ϕ〉 , |ψ〉 ∈ H. (2.3)

Notice the ambiguous nature of dirac’s notation here; Â |ψ〉 is denoted as
∣∣∣Âψ〉.

A self-adjoint operator is such that Â† = Â. We will justify why self-adjoint operators
are required to describe observables in quantum mechanics, but first lets consider their
properties. If Â and B̂ are self-adjoint

1. Â+ B̂ is also self-adjoint.

2. (ÂB̂)† = B̂†Â† = B̂Â in general 6= ÂB̂.

3. ÂB̂ + B̂Â and i(ÂB̂ − B̂Â) are self-adjoint.

Let’s try to be a little bit less abstract. If we decompose a vector on a basis |ψ〉 =∑d
j=1 aj |ϕj〉, then we can always work with the mental image of the ket |ψ〉 as a column

vector of its components.

|ψ〉 ↔


a1
a2
.
.
.
ad

 (2.4)

Hence, the dual vector or the bra 〈ψ| is represented as the conjugate-transposed row
vector.

〈ψ| ↔
(
a∗1 a∗2 . . . a∗d

)
(2.5)

Chapter 2: A crash course on Quantum Mechanics 14

A linear operator Â acting on |ψ〉 can then be associated to a matrix.

Â↔



A11 A12 A13 ... A1d

A21 A22 A23 ... A2d

. . . .

. . .
. . . .

. . . .
Ad1 Ad2 Ad3 ... Add


(2.6)

where the matrix elements Ajk are given by

Ajk =
〈
ϕj

∣∣∣Âϕk〉 = 〈ϕj| Â |ϕk〉 . (2.7)

Consequently, a self-adjoint operator Â is one for which the matrix is Hermitian, that is,
Ajk = A∗

kj ∀ k, j. (2.8)
The application of an operator to a vector is then simply the matrix-vector multiplication

|ϕ〉 = A |ψ〉 (2.9a)

|ψ〉 =
d∑
j=1

aj |ϕj〉 (2.9b)

|ϕ〉 =
d∑
j=1

bj |ϕj〉 (2.9c)

Â↔ Ajk (2.9d)
where, 

b1
b2
.
.
.
bd

 =



A11 A12 A13 ... A1d

A21 A22 A23 ... A2d

. . . .

. . .
. . . .

. . . .
Ad1 Ad2 Ad3 ... Add




a1
a2
.
.
.
ad

 , (2.10)

concisely,

bj =
d∑

k=1

Ajkak. (2.11)

Note: The matrix-vector representation is by far the most intuitive representation as it
clarifies almost all aspects. Further, it provides a tractable form to simulate quantum
mechanics using computer programs like MATLAB. Hence, we strongly encourage and
adapt this representation throughout this course.

Continuing, the inner product can be represented as a conjugate-row (the bra 〈ϕ|) mul-
tiplying the column vector |ψ〉.

〈ϕ|ψ〉 = (b∗1, ..., b
∗
d)


a1
.
.
.
ad

 =
∑
j

b∗jaj (2.12)

15 2.2 Measurements

Consequently, the norm can be written as

‖ψ‖ =
√
〈ψ|ψ〉 =

√√√√ d∑
j=1

|aj|2. (2.13)

Composite operators can be written as matrix-matrix multiplications

Ĉ = ÂB̂ ↔


C11 C12 ... C1d

C21 C22 ... C2d

.
.

. .
. . . .

Cd1 Cd2 ... Cdd

 = (Ajk).(Bjk) (2.14)

Cjk =
d∑
l=1

AjlBlk. (2.15)

Finally, we can build objects like a “ket-bra” represented by the outer-product or a
column-row multiplication.

|ϕ〉 〈ψ| ↔


b1
.
.
.
bd

 (a∗1, ..., a
∗
d) =


b1a

∗
1 b1a

∗
2 ... b1a

∗
d

b2a
∗
1 b2a

∗
2 ... b2a

∗
d

.
.

. .
. . . .

bda
∗
1 bda

∗
2 ... bda

∗
d


Eigenvectors and eigenvalues:
For a square matrix A ∈ Mdxd : Cd → Cd, an eigenvector is a vector |ν〉 ∈ Cd such that
the action of A simply scales the vector: A |ν〉 = λ |ν〉 where the eigenvalue λj ∈ C.

Further, the following statements are equivalent.

1. A is Hermitian: A = A†.

2. The eigenvectors of A form an orthonormal basis that spans the entire space Cd:
span{|νj〉 |j = 1, 2, . . . , d} with 〈νj|νk〉 = δjk where A scales the eigenvctors A |νj〉 =
λj |νj〉.

3. The eigenvalues of A, are real: λi ∈ R ∀ j = 1, 2, . . . , d.

Having introduced eigenvectors, eigenvalues and their properties for Hermitian matrices,
we now mention an important theorem from linear algebra. This theorem will help us
develop an intuition to aid us in digesting the measurement postulate a little better.

Spectral theorem:
In finite dimensions, any Hermitian matrix A = A† ∈Mdxd : Cd → Cd can be decomposed
over its spectral basis or eigenbasis as

A =
d∑
i=1

λi|νj 〉〈 νj|. (2.16)

It can be a nice exercise to try and prove the above-stated properties and theorem.

Chapter 2: A crash course on Quantum Mechanics 16

Having covered all the prerequisites, we now describe the act and consequence of mea-
surements in quantum mechanics.

1. Outcome: The outcome of measuring an observable Â is always one of the eigen-
values λj ∈ spec(Â). The only possible outcome of a single act of measurement is
an eigenvalue of Â. In quantum mechanics we deal with (a) observables that have
a continuous spectrum, like position or momentum, (b) observables that have a
discrete specturm, like angular momentum and (c) observables that have a mixed
spectrum, partly discrete and partly continuous. However, for the purpose of this
course and most of quantum computing, we deal with finite-dimensional observables
that have discrete spectra.

2. Probabilities: The outcome or eigenvalue obtained through a measurement is
determined by a (truly) random process, with a-priori probabilities. If the system
is in state |ψ〉 and we measure Â (whose eigenvalues are λj) then the probability
of obtaining an outcome λj is given by:

prob(λj) = ‖ 〈νj|ψ〉 ‖2 (2.17)

where |νj〉 is the corresponding eigenvector. This is known as Born’s rule. The
above equation holds only in the case where λj is a non-degenerate eigenvalue.
That is, there exists no other eigenvector

∣∣ν ′j〉 with the same eigenvalue λj. In the
case of degenerate eigenvalues (not very important in quantum computing) Born’s
rule can be extended and the probability is defined more generally as:

prob(λj) = ‖Π̂j |ψ〉 ‖2 = 〈ψ| Π̂j |ψ〉 (2.18)

where Π̂j is the orthogonal projector on the sub-space spanned by the degenerate
eigenvectors associated to λj. In the non-degenerate case, the orthonormal pro-
jectors are simply the rank-one projectors Π̂j = |νj 〉〈 νj|. The orthonormality is
defined as Tr(Π̂jΠ̂k) = δjk and can be verified trivially for the rank-one projectors.

3. Consequence: Since we want measurements to be verifiable and hence repeatable,
it is natural to require the state of the system after measurement to correspond to a
state that justifies the outcome. In simpler words, measurements inevitably change
the state of the system. The post-measurement state, when an outcome λj is
observed, has to be the corresponding eigenvector |νj〉. Or, as is stated popularly,
the system collapses onto the state |νj〉. This is why the measurement postulate is
also known as the collapse postulate. More generally, if λj the outcome, then the
new state is the projection onto the νj (maybe degenerate) eigenspace Π̂j |ψ⟩

∥Π̂j |ψ⟩∥
.

Unlike the third point above, where we repeatedly measure on the same state, if we were
to prepare several copies of the state |ψ〉 or to prepare a system in the state |ψ〉, perform
a measurement Â and then repeat the process several times, we would (potentially) get
different outputs each time. This is owing to the inherent probabilistic (random) nature
of measurements in quantum mechanics. Leveraging this, we can calculate the average

17 2.2 Measurements

or expectation value of the process.

〈λ〉 =
∑
j

λj prob(λj)

=
∑
j

λj| 〈νj|ψ〉 |2

=
∑
j

λj 〈ψ|νj〉λj 〈νj|ψ〉

= 〈ψ|

(∑
j

λj |νj〉 〈νj|

)
|ψ〉

= 〈ψ| Â |ψ〉

(2.19)

This is also known as the expectation value of the operator Â on the state |ψ〉. We reiterate
that this is not a characteristic that arises from the random errors due to an imperfect
measurement apparatus, but is a fundamental property of quantum mechanics. Further,
using discrete eigenvalues, we can completely rule out the role of imperfect measurements
in generating this randomness. We simply need to use an apparatus with precision that
is finer than the eigenvalue spacing.

Nonetheless, there exist some pairs or groups of observables that can be measured up
to arbitrary precision individually but not simultaneously. These are known as non
commuting observables–observables for which ÂB̂ 6= B̂Â =⇒ [Â, B̂] 6= 0. The most
famous example of such a pair is position and linear momentum, where [x̂, p̂] = iℏ.
However, such observables are of little importance right now and hence we shall not
dwell over them.

Now, we go back to the question “Why do we need self-adjoint operators for observables?”
We want an observable to be described such that, when we perform a measurement, we
get a value that has some physical meaning. Since all (classical) measurements we make
yield real values like position or momentum, it is preemptive but necessary to assume
that observables obey the same in quantum mechanics and yield real eigenvalues. Fur-
ther, whenever we perform a measurement using an observable, we want the observable
to encompass all the possible outcomes and post-outcome consequences. That is, to
have a complete eigenbasis that spans the entire Hilbert space. Hence, these two ax-
iomatic requirements (motivated by classical mechanics and physical reality), lead to the
representation of observables as Hermitian matrices. Although this section may seem
very axiomatic and not concrete, quantum mechanics and especially the measurement
postulate is by far the most accurate and widely tested description of nature.

Moving forward, we move to the rather not-so-unsettling topic of unitary time evolution in
quantum mechanics, which unlike the measurement process, is determninistic. However,
as we explain towards the end of the section, the non-unitary and non-deterministic
nature of measurements poses a strange contradiction.

Chapter 2: A crash course on Quantum Mechanics 18

2.3 Time evolution
Every theory of physical phenomena must account for how systems evolve over time. In
quantum mechanics, the state of the system changes over time through a unitary operator

|ψ(t)〉 = Û(t, t0) |ψ(t0)〉 (2.20)

where t0 is the initial time and t ≥ t0 is the final time. A unitary operator Û has the
property of preserving the norm and the inner product between states. Since Û †Û = 1,〈

Ûϕ
∣∣∣Ûψ〉 =

(
Û |ϕ〉

)† (
Û |ψ〉

)
=
(
〈ϕ| Û †

)(
Û |ψ〉

)
= 〈ϕ| Û †Û |ψ〉 = 〈ϕ| 1 |ψ〉 = 〈ϕ|ψ〉

(2.21)
and

‖Û |ψ〉 ‖ =
√〈

Ûψ
∣∣∣Ûψ〉 =

√
〈ψ|ψ〉 = ‖ |ψ〉 ‖. (2.22)

This latter property is a natural requirement since time evolution should not violate the
physicality of a state and hence preserve its norm, since all physically allowed quantum
states have unit norm.

Now, we look closely at how Û(t, t0) is defined. The Schrödinger equation governs time
evolution in quantum mechanics as

d

dt
|ψ(t)〉 = −iĤ(t) |ψ(t)〉 , (2.23)

where, we set the operator Ĥ in units of the reduced Planck’s constant ℏ = h
2π
. The

operator Ĥ is called the Hamiltonian of the system and is the observable which can be used
to measure the total energy. Solving Equation 2.23 for the case when the Hamiltonian
Ĥ does not depend on time, we get

Û(t, t0) = e−i(t−t0)Ĥ . (2.24)

The exponential of an operator is simply defined as the power series expansion of the
operator involving powers of the operator. In the matrix representation, this would
involve higher powers of matrices, which can be simply calculated by multiplying the
matrix with itself several times.

As we will see later, in quantum computing, we will be interested in the specific time
evolution of a few, namely one or two, quantum particles (qubits) under well-defined
unitaries (gates) resulting from tailored Hamiltonians. Nonetheless, once we will define
the universal set of these gates, we will not bother about their Hamiltonians or how they
are realized in practice.

What we intend to highlight, is that unlike the measurement process that is inherently
random, the dynamics or actions of all quantum processes are governed by deterministic
unitary operators. This poses a contradiction and measurements need to be treated
separately as special processes. This contradiction has been the topic of debate for almost
a century and is a constant reminder of how we pay for the extraordinary predictive power
of quantum mechanics by bearing with the awkwardness of the theory.

19 2.4 Composite systems

2.4 Composite systems
This is perhaps the most important postulate for quantum information, together with the
measurement postulate. Given two systems A and B, described in the Hilbert spaces HA

and HB, the composite system, that is the total system describing both systems jointly
belongs to the Hilbert space H = HA ⊗HB. If system A is prepared in a state |ψA〉 and
system B in a state |ψB〉, then the state of the composite system is:

|ψ〉 = |ψA〉 ⊗ |ψB〉 (2.25)
where we use the definition of tensor products for vectors and matrices. If HA and HB

have bases {|ϕj〉A ; j = 1, 2, . . . , d} and {|ϕk〉B ; k = 1, 2, . . . , d} respectively, then H is
built by defining it’s basis as {|ϕj〉A ⊗ |ϕf〉B ; j, k = 1, 2, . . . , d}.

States that can be written as |ψ〉 = |ψA〉 ⊗ |ψB〉 are said to be “separable” as one can
answer the question “What is the state of subsystem A or subsystem B?”, separately for
both A and B. However, the linearity of quantum mechanics imopses that states like
|ψ〉 = α |ψA〉 ⊗ |ψB〉 + β |ϕA〉 ⊗ |ϕB〉 are also possible states of the composite system.
These states are called non-separable or entangled states since here, we cannot write the
state as a tensor product of two states and hence cannot find the states of the subsystems
A and B separately.

Similar to tensor products of states, tensor products of operators are also possible. They
are easily defined on separable states, and the general definition follows by linearity and
expansion on a basis. For a separable operator Ĉ = Â ⊗ B̂, given |ψ1〉 = Â |ϕ1〉 and
|ψ2〉 = B̂ |ϕ2〉, then:

|ψ1〉 ⊗ |ψ2〉 = (Â |ϕ1〉)⊗ (B̂ |ϕ2〉)
= Â⊗ B̂(|ϕ1〉 ⊗ |ϕ2〉)
= Ĉ(|ϕ1〉 ⊗ |ϕ2〉)

(2.26)

The tensor product is essential in quantum computing to describe a system made of
several quantum bits.

2.5 The Quantum Bit
Let us get into business and define the elementary basis of quantum information. Anal-
ogous to the classical bit, which is a binary variable taking values 0 or 1, we define the
quantum bit.

A qubit is the smallest non trivial quantum system, whose state is described by vectors
in a Hilbert space of dimension two. The basis is called the computational basis and is
composed of two orthogonal vectors {|0〉 , |1〉} with 〈0| |1〉 = 0 and ‖ |0〉 ‖ = ‖ |1〉 ‖ = 1.
The simplest canonical representation is hence the 2D column vector basis

|0〉 =
(
1
0

)
, |1〉 =

(
0
1

)
. (2.27)

The most general state of the qubit is then
|ψ〉 = a |0〉+ b |1〉 (2.28)

with the constraint |a|2 + |b|2 = 1, a, b ∈ C.

Chapter 2: A crash course on Quantum Mechanics 20

2.5.1 Pauli Basis
The Pauli matrices play a central role in all of Quantum information. They are 2 × 2
complex matrices. They are both unitary and Hermitian, making them idempotent.

X = σx =

(
0 1
1 0

)
, Y = σy =

(
0 −i
i 0

)
, Z = σz =

(
1 0
0 −1

)
. (2.29)

The eigenbases of each of these matrices are called the corresponding Pauli basis. It is
simple to see that the canonical basis we chose previously is the Pauli Z basis. These
matrices have several interesting properties which we will see and use with due time
(please see this Wikipedia page for now).

Exercise: We can try finding the Pauli X and Y bases.
Solution: They are given by

|±;X〉 = |0〉 ± |1〉√
2

, |±;Y 〉 = |0〉 ± i |1〉√
2

.e (2.30)

But it is a healthy exercise to derive this yourself, at least once!

2.5.2 The Bloch Sphere
The Bloch sphere is a geometrical representation of a single qubit’s state space. That
is, all single qubit states lie on or inside the Bloch sphere. In this and the following few
chapters, it will be sufficient for us to address only the surface of the sphere (pure states),
and then we shall study mixed states later. Now, we show exactly how pure states are
represented on the Bloch sphere. We begin with rewriting the general single qubit state
as

|ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉 . (2.31)

This representation is completely general and equivalent to the one presented in Equa-
tion 2.28. For θ ∈ [0, π], ϕ ∈ [0, 2π], we can span all possible values of the coefficients
a, b ∈ C. The geometric nature arises naturally from the fact that we can now represent
θ and ϕ as angles made by a vector on a sphere. Specifically,

• We choose the 3D Euclidean space.

• Due to the normalization condition, all states are represented by unit vectors re-
siding on the surface of the sphere.

• The angles θ and ϕ are the angles made by the vector (state representation) with
the +z and +x axes respectively. This combined with Equation 2.31 makes it easier
to see why it is sufficient to choose the range of θ only up to π.

• Hence, the Pauli Z basis states |0〉 , |1〉 are represented as unit vectors along the +z
and −z axes respectively with θ|0⟩ = 0 and θ|1⟩ = π. Similarly, the Pauli X and Y
basis states are represented along the ±x and ±y axes, respectively.

This representation will be particularly useful later for understanding crucial theorems
on single qubit transformations.

Exercise: We can develop familiarity with the Bloch sphere representation by computing
the angles θ and ϕ for each of the Pauli basis states. Visualizing them on the sphere

https://en.wikipedia.org/wiki/Pauli_matrices

21 2.5 The Quantum Bit

Figure 2.1: The Bloch sphere representation.1

might help us develop a better geometrical intuition.
Solution: For the X basis, θ|±,X⟩ = π

2
, ϕ|+,X⟩ = 0, ϕ|−,X⟩ = π and for the Y basis

θ|±,Y ⟩ =
π
2
, ϕ|+,Y ⟩ =

π
2
, ϕ|−,Y ⟩ =

3π
2
.

2.5.3 A brief discourse on measurement
In quantum computing, we will assume that measurements are carried out in the com-
putational basis {|0〉 , |1〉} unless specified otherwise. Hence, when measuring on a
state |ψ〉 = a |0〉 + b |1〉 one obtains “0” or “1” with probability ‖ 〈0|ψ〉 ‖2 = |a|2 and
‖ 〈0|ψ〉 ‖2 = |b|2, respectively. The state after measurement will be |0〉 or |1〉 depending
on the outcome of the measurement.

Notice that in a single shot (act of measurement), it is impossible to know the values
of a and b, and thus the state. After the 1st measurement, the state is lost. This is
the impossibility of completely knowing a quantum state from just one instance of it.
This is related to the no-cloning theorem, which prohibits us from developing one single
apparatus that can clone any arbitrary quantum state. If we could clone |ψ〉, without
knowing it fully, then we could generate several copies, measure them separately and
learn more information about |ψ〉.

Finally, if in one measurement, we cannot obtain anything except |0〉 or |1〉, it would be
natural to question if a qubit is any different from a classical probabilistic binary bit?
Yes, it is because of entanglement, which we will see in more detail soon.

2.5.4 Multiple Qubits
A quantum computer consists of several qubits. Thanks to Postulate IV, we know how
to describe the entire system. If H1 is the Hilbert space of one qubit, then for n qubits,
the total composite Hilbert space is given by

Hn =

n times︷ ︸︸ ︷
H1 ⊗H1 ⊗ · · · ⊗ H1 = H⊗n

1 . (2.32)

Hn is the Hilbert space corresponding to the entire quantum system on which quantum
computations will be performed. This is a space of dimension d = 2n spanned by the

1The state vector |ψ〉, lies on the surface of the sphere. However, since we projected a 3D sphere onto
this 2D page, it appears as if the vector is shorter.

Chapter 2: A crash course on Quantum Mechanics 22

composite (tensor product) computational basis of length 2n.

{|0〉 ⊗ |0〉 ⊗ ...⊗ |0〉 , |0〉 ⊗ |0〉 ⊗ ...⊗ |1〉 |1〉 ⊗ |1〉 ⊗ ...⊗ |1〉} =
{|00...0〉 , |00...01〉 , |00...10〉 , ..., |11...1〉},

(2.33)

where the last shortcut notation is adapted without the loss of generality. We notice
that the basis indices now look like binary bit-strings of length n. Leveraging this, we
succinctly represent the basis as {|j〉 ; j = 0, 1, 2, . . . , 2n − 1} by replacing the binary
bit-strings inside the kets with the corresponding binary integer. Explicitly, j = x0×20+
x1 × 21 + · · ·+ xn−1 × 2n−1. Finally, a general multi-qubit state is a linear superposition
of these basis elements.

|ψ〉 =
2n−1∑
j=0

cj |j〉 (2.34)

The probability of getting the state |j〉 as the measurement outcome upon measuring in
the n-qubit computational basis is ‖ 〈j|ψ〉 ‖2 = |cj|2.

The exponentially large size of the multi-qubit Hilbert space should give us an idea why
we cannot simulate arbitrary quantum systems on classical computers efficiently. More
importantly, the exponentially large span of n qubits as opposed to n classical bits, gives
us a sliver of hope that we can use quantum computers to also solve classically intractable
problems with (hopefully) exponentially smaller system sizes. However, there is no free
lunch and hence, if we want to extract complete information about an n-qubit state then
we need to perform exponentially many measurements.

The art of quantum computation lies in designing algorithms that leverage quantum ef-
fects like interference and entanglement through smart circuitry or measurement schemes
to avoid exponential overheads while successfully encoding and extracting the information
required to solve the problem. In the following lectures, we will see some great examples
of this philosophy in action.

In this course, we ignore the practical aspects involve in physically realizing such systems. Physically
realizing such a system would require one to develop n qubits and then control all the interactions between
them. This, in practice, is a challenging task, which becomes more arduous upon pairing with the perils
of errors and noise, as we will see later.

Chapter 3

The paradigm of digital Quantum
Computation

The goal of digital quantum computation is to devise a universal paradigm for compu-
tation leveraging the application of unitary operations on a set of qubits. Similar to
classical computation, we would like this to be feasible in practice, which requires defin-
ing the elementary building blocks. Further, we would like these building blocks to be
simple to engineer, control and measure/read out. This decomposition is essential for
both mathematical and physical reasons. Mathematically, it makes it possible to clearly
establish the notion of quantum computational complexity. Physically, it fulfills the lo-
cality criterion: we build complex gates using elementary gates that are local in space as
they correspond to physical objects with local interactions.

Classical Computation Quantum Computation

Processes bits. Processes qubits.

Made from a finite set of logical gates
(universal gates).

Made of a finite set of quantum logical
gates (universal gates).

Relies on the initialization of the input
to an arbitrary value.

Not all initial states are easy to prepare.

Allows the possibility of reading out the
output.

Allows readout through quantum mea-
surements and collapse.

Relies on error correction (or on few er-
rors).

Quantum error correction (no-cloning
theorem).

Table 3.1: Comparison between classical and quantum computation.

Since quantum computing is a superset of classical computing, the quantum computation
paradigm must fulfill several requirements. Foremost, it must contain classical computa-
tion, and it must reproduce it efficiently, namely at a maximal polynomial overhead (in
time and space). This is true because:

23

Chapter 3: The paradigm of digital Quantum Computation 24

1. Statement 1: Irreversible quantum computing (AND, XOR, etc.) can be repro-
duced by reversible classical computing.
Proof : f : {0, 1}n → {0, 1}m with m < n: irreversible.
Define: f̃ : {0, 1}n+m → {0, 1}n+m, f̃(x; 0(m)) = (x; f(x)).

2. Statement 2: It can be done efficiently. For proof, see [1].
Statements 1 and 2 ensure that the notion of classical computational complexity is
not dependent on the paradigm, whether reversible or irreversible, but it’s universal.

3. Statement 3: Classical reversible computing is a particular case of quantum com-
puting.
Proof : Recall that quantum computing is a unitary operation U : H⊗n 7→ H⊗n.
A reversible classical operation on n bits sends each bitstring x into a bitstring y
and consequently, the total result of f(x) is a permutation of the set of 2n input
bitstrings. It suffices to define U : |x〉 7→ |y〉 as a permutation of the vectors of
the computational basis. Essentially, U is a 2n × 2n matrix that has all zeros and
one 1 in each row and each column. The question remains open if we can execute
an arbitrary unitary U with the quantum computing paradigm efficiently (we will
answer this soon).

Reminder: The state of 1 qubit is defined in H1 with computational basis {|0〉 , |1〉}.
|ψ〉 = α |0〉 + β |1〉 and |α|2 + |β|2 = 1. Consequently, the state of n qubits is defined in
Hn = H1⊗H1⊗ ...⊗H1 = H⊗n

1 with computational basis {|00...0〉 , |00...01〉 , ..., |11...1〉}.

3.1 Quantum gates
Quantum gates are the general unitary operations applied to any quantum circuit. These
gates can act on single or multiple qubits at the same time. For an arbitrary state
|ψ〉 =

∑
j cj |j〉, where {|j〉} is the computational basis, the action of any unitary U on

the state can be written as

U |ψ〉 = U

(∑
j

cj |j〉

)
=
∑
j

cjU (|j〉) (3.1)

where, the second step leverages the fact that U is a linear operator. Hence, to completely
define a gate, it is sufficient to study its actions on the basis elements. Then its action on
any other state can be determined by expanding the state as a linear combination over
the basis states and the output state is simply the same linear combination of the outputs
corresponding to each basis state. This brings us to the topic of single and multiple qubit
gates.

3.1.1 Single-qubit gates
Single-qubit gates are simple unitary operations U acting on the Hilbert space of one
qubit H1. The elementary single qubit quantum gates are

1. The Pauli gates.

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)

25 3.1 Quantum gates

We recall their commutator relations

[X,Y] = XY − Y X = 2iZ

[Y, Z] = 2iX

[Z,X] = 2iY

.

2. Hadamard gate: H = 1√
2

(
1 1
1 −1

)
3. Phase gate: S =

(
1 0
0 i

)
4. π/8 or T-gate: T =

(
1 0
0 eiπ/4

)
Now, it is natural to ask why these gates are important. Pauli gates play a special role
in physics. They are used to generate rotation operators (and also in error corrections):

Rα(θ) = e−iθα ∀ α = X,Y, Z. (3.2)

Rotations are useful in proving the theorem on realizing arbitrary unitaries. They are also
important in defining some important algorithms, such as the QFT (Quantum Fourier
transform). We will see both these concepts soon.

Notice that S = T 2. So, why do we have to include both in our set of universal gates? The
reason is rather deep and concerns quantum error correction. Hence, it will be clearer
later in the course. For now, it is better that we keep both and use S instead of T 2

whenever possible. Next, we shall look at some useful theorems.

3.1.2 Some useful theorems
First, we will understand how arbitrary single-qubit gates act. Any single qubit gate that
maps any pure quantum state to another essentially performs a rotation on the Bloch
sphere (up to an arbitrary phase eiα). This idea helps us see two natural representations
of an arbitrary single-qubit gate.

Theorem 1: An arbitrary single qubit gate U can be written as a rotation by an angle
θ about some direction given by a unit vector n̂.

U = eiαRn̂(θ)

= eiαe−iθ(nxX+nyY+nzZ)
(3.3)

Theorem 2: An arbitrary single qubit gate U can be written as the composition of
three independent rotations along the x, y and z directions by angles β, γ, δ ∈ [0, 2π],
respectively.

U = eiαRz(β)Ry(γ)Rz(δ) (3.4)

Both these representations are natural to see if we visualize states and operations on the
Bloch sphere. The unitaries Rx, Ry and Rz, represent rotations around the x, y and z
axes respectively. This makes it obvious that any rotation around the Bloch sphere can

Chapter 3: The paradigm of digital Quantum Computation 26

be now written as a composition of rotations around the three axes, or as a single rotation
around an intermediate axis given by n̂.

Corollary: An arbitrary single-qubit gate U can be written as:

U = eiαAXBXC (3.5)

where A,B and C are unitary matrices and ABC = 1 Proof : It is fairly simple to see
this by setting

A = Rz(β)Ry(γ/2)

B = Ry(−γ/2)Rz(−(δ + β)/2)

C = Rz((δ − β)/2)
(3.6)

in Theorem 2. This mysterious relation will prove its usefulness in a moment.

The two theorems above can be tied to the fact that the Pauli matrices are generators of
the Lie group SU(2), which is the group of all possible single qubit unitaries. For brevity
of these notes, we skip the details about generators and groups here, but would be happy
to provide the sources if it interests you :)

3.1.3 Quantum circuit notation
Each qubit is represented by a line or wire. Most of the time, gates are represented by
boxes. Consider a simple circuit below that applies the Hadamard gate on a single qubit.

H

Successive quantum operations are denoted by successive gates. However, we need to be
careful that gates are applied from left to right (first to last), whereas the operators are
applied from right to left (first to last) when acting on a quantum state. For example,
the circuit for implementing the Hadamard gate followed by the Pauli-X gate on a single
qubit is

|0〉 H X

and corresponds to the operation XH |0〉.

Note: It is customary to consider the initial state of each qubit in the circuit to be |0〉
unless specified otherwisde.

Now consider a two-qubit circuit with single-qubit gates.

H X

Y T

|Ψout〉

The output is a product state given by the tensor product between the output states of
the two qubits |Ψout〉 = XH |0〉 ⊗ TY |0〉.

27 3.1 Quantum gates

3.1.4 Two-qubit gates
Extending single-qubit gates, we can also define two, there or multiple qubit gates. How-
ever, most multiqubit (≥ 3) gates can be constructed using two-qubit gates. The most
interesting two-qubit gates are Controlled gates C-U . These gates are controlled by a
control qubit; that is, the gate U is applied to the target qubits if the control qubit is in
state |1〉. Hence, such a gate can be expressed as

C-U = |0 〉〈 0| ⊗ 1 + |1 〉〈 1| ⊗ U. (3.7)

And in the circuit representation they are denoted as

U

where the black dot on the first qubit indicates that it is the control qubit.

Controlled gates are immensely useful in almost all multi-qubit operations and play a
pivotal role in generating entanglement in quantum circuits (as we will see soon). We
are mostly interested in two controlled operations, C-NOT and C-Z, which, as the names
suggest, apply a controlled-NOT (X) gate and a controlled-Z gate, respectively.

C-NOT: It is a 2-qubit operation defined on the computational basis in a way that it
flips the 2nd qubit if the first qubit is in the state |1〉 and does nothing if the 1st qubit is
in the state |0〉. It is represented in a circuit as follows.

Further, its matrix representation is given by studying its action on the computational
basis through its truth table as shown in Table 3.2.


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Concisely, it can be expressed in the computational basis as

|c〉 |t〉 → |c〉 |t⊕ c〉 , (3.8)

where “c” and “t” denote the states of the control and target qubits, respectively. The
⊕ symbol denotes the addition modulo 2: 0 + 0 = 0, 0 + 1 = 1 + 0 = 1 and 1 + 1 =

Input state Output state
|00〉 |00〉
|01〉 |01〉
|10〉 |11〉
|11〉 |10〉

Table 3.2: Truth table for the C-NOT gate.

Chapter 3: The paradigm of digital Quantum Computation 28

(2modulo2) = 0, which is denoted formally as 2 ≡ 0(mod2). This also motivates why the
circuit representation is that of a controlled ⊕ operation.

A particularly useful representation of the C-NOT gate is

C-NOT = |0 〉〈 0| ⊗ 1 + |1 〉〈 1| ⊗X. (3.9)

This representation clearly indicates that it is the sum of two tensored operators, and
hence its corresponding unitary UC-NOT is a non-separable 2-qubit unitary. That is, it
can not be written as UC-NOT = U1 ⊗ U2 where U1,2 are single qubit unitaries that act
on qubits 1 and 2 respectively. The fact that it is non-separable is important as it can
generate entanglement.

Example:

|0〉 H

|0〉

|ψ〉

where, |ψ〉 = |00⟩+|11⟩√
2

. On the other hand, a separable circuit of two qubits can not.

U1

U2

This is because the output state in the latter case can be simply written as U1 |0〉⊗U2 |0〉.
Hence, single-qubit gates are said to be local and can be implemented relatively easily on
physical systems as compared to multi-qubit non-local operations.

Due to their non-local nature, two-qubit operations pose a challenge while physically
realizing quantum computers. Since entanglement requires physical interaction between
the entangled entities, a two-qubit non-separable operation requires physical interaction
between qubits. Naturally, local interactions between neighboring qubits are stronger
and more persistent than long-range interactions. Hence, to entangle any arbitrary pairs
of qubits, the topology of the set of qubits on a quantum processor plays a pivotal role.
For example, Google’s Sycamore quantum processor is a square grid of qubits in which
each qubit can interact (and thus implement gates like C-NOT) with its four neighbors
only. Now, we look at another interesting gate, the controlled phase gate or the C-Z
gate.

C-Z: Similar to the C-NOT gate, the C-Z gate applies the Pauli Z operator on the
target qubit if the control qubit is in state |1〉 or leaves the target qubit unchanged if the
control qubit is in state |0〉.

C-Z =
Z

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 = |0 〉〈 0| ⊗ 1 + |1 〉〈 1| ⊗ Z.

29 3.1 Quantum gates

Since the PauliX and Z operators are related by the basis transform (using the Hadamard
unitary operation), X = HZH and Z = HXH, we can write the controlled operations
C-NOT and C-Z in terms of each other as follows.

Z
=

H H

=
H Z H

Some controlled operations can also be separable. For example,

C-α =
eiα

= |0〉 〈0|⊗1+|1〉 〈1|⊗eiα1 =

(
1 0
0 eiα1

)
=

(
1 0
0 eiα

)
⊗
(
1 0
0 1

)
= U(eiα)⊗1.

What about a general controlled unitary operation C-U? These play a very important
role in all the quantum algorithms. Hence, it is imperative to address the question, if for
an arbitrary single-qubit unitary operation U), can we easily build a circuit for applying
the controlled operation C-U? Recalling the result U = eiαAXBXC with ABC = 1, we
can implement the controlled operation as follows.

U
=

(
1 0
0 eiα

)

C B A

Exercise: We leave it as an exercise to verify this result.
Hints: (a) Try using the definition of C-U as a sum of tensor products and perform the
full matrix multiplication or (b) simply check if the action of the given circuit matches
the desired action of C-U on all the four 2-qubit basis states.

3.1.5 Universal gates
Universal gates are a set of gates that can be used to construct any other gate. The
Hadamard, Phase and T gates, along with the two-qubit C-NOT gate, form a universal
set of quantum gates. We will see this in more detail in this section.

Using C-NOT and arbitrary single-qubit operations, we can make any arbitrary C-U .
Further, we can also build doubly-controlled unitary gates using C-U and C-NOT gates

U

= C2(U) =

V V † V

for any V such that V 2 = U .

The special gate C2(X) (doubly-controlled NOT) can be realized using V = (1− i)(1 +
iX)/2. The explicit circuit for C2(X) is given below.

Chapter 3: The paradigm of digital Quantum Computation 30

=

T

T T †

H T † T T † T H

This gate is very important and is called a Toffoli gate. The Toffoli gate plays a funda-
mental role in establishing a relation between classical and quantum computation. It is
shown that universal reversible classical computation requires a three-bit gate since one
and two-bit gates are not enough. This three-bit gate can be chosen to be the Toffoli
gate. However, when we go from classical to quantum computing and consider the very
same gate, it is no longer fundamental and can be expressed in terms of 1 and 2-qubit
gates instead. This fact provides a glimpse of the advantage of quantum computing over
classical computing.

Iteratively continuing the above line of thought, the construction of multi-controlled
quantum gates can be realized. For example, n-qubit controlled operations Cn(U) gates
can be decomposed as ladder-like arrangements of C-NOT gates.

|0〉

ancilla qubits|0〉
|0〉
|0〉

U

=

U

This example is instructive for two reasons.

1. It exemplifies the notion and importance of ancilla qubits, which are an additional
set of qubits we can use as a help for realizing the target operation. Often, we
would like to avoid these ancilla qubits, but sometimes, they are unavoidable.

2. It demonstrates the idea of uncomputation. To achieve the operation Cn(U), we
make operations on the ancilla qubits too (the NOTs from the C2(X) gates). We
may leave the ancilla qubits as is after the C-U . However, we usually undo the
operations on the ancilla qubits because we may have to use them again for further
calculations, and it is often more efficient to “reuse” qubits than to use a larger set
of qubits.

We may now ask “How efficiently can this paradigm help us implement an arbitrary
unitary operation U on n qubits?”. What we know is:

1. A singly-controlled C-U can be built efficiently using C-NOT and V =
√
U gates.

2. A multi-controlled Cn(U) can be built efficiently from C-NOT and C-U) gates.

Hence, we can prove the following statement (please refer [2] for more details).

31 3.1 Quantum gates

Statement 1: Any arbitrary unitary Un acting on n qubits can be implemented exactly
using O(n24n) arbitrary single-qubit gates and C-NOT gates.

Proof: The proof of this statement is given in [2] (Section 4.5.2). Further, it is shown that
this construction is optimal in the worst-case scenario, that is, for the hardest n-qubit
unitaries, we cannot do better than O(n24n) C-NOTs and single qubit unitaries.

The resources required to implement an arbitrary n-qubit unitary Un grow exponentially
with the number of qubits n. This very clearly establishes that quantum computing
is not universally efficient; that is, we cannot expect to solve arbitrary problems with
sub-exponential overheads. Consequently, this necessitates the need to design algorithms
that leverage quantum effects without introducing exponential overheads.

Up until now, we assumed access to arbitrary single-qubit unitaries U and hence us-
ing C-NOT (for multi-qubit extension) was enough to implement arbitrary multi-qubit
unitaries1. However, we now highlight a key subtlety overlooked when discussing the
implementation of arbitrary single-qubit unitaries. Although we showed earlier that any
single qubit unitary can be decomposed using rotations around the three cartesian axes,
we glossed over the fact that exactly implementing arbitrary rotations around the axes is
not trivial. In fact, this too, is exponentially hard to do when equipped with a finite gate
set. So are we doomed? Of course not. If quantum computing was truly more expensive
than useful, we would not be studying this subject today.

If not exactly, then “Can we approximate an arbitrary single-qubit unitary U with an effi-
ciently long sequence of gates taken from a finite set?” The short answer is yes! Formally,
using the distance between two unitary operators, we define the problem as follows.

D(U, V) = max
|ψ⟩
‖(U − V) |ψ〉 ‖, (3.10)

where, |ψ〉 are normalized states in the Hilbert space of n qubits. This definition of
distance is physically sound as; indeed, it implies that if we measure an observable Ô on
U |ψ〉 and V |ψ〉, then the probabilities pU and pV to obtain a given outcome have the
relation

|pU − pV | ≤ 2D(U, V). (3.11)

Hence, if we want to approximate U with a sequence of gates from the universal set S
with accuracy ϵ, that is, for V = V1V2 . . . ∀ Vi ∈ S, it would imply that E(U, V) < ϵ.

Let’s start by establishing a minimal universal gate set. That is, a set of gates that can
be used to implement any required operation (up to arbitrary precision). In classical
computing, these sets are single gates, either NAND or NOR. In quantum computing,
the most famous universal gate set is the Clifford+T gate set consisting of the H, S,
C-NOT and T gates.

The Solovay-Kitaev Theorem states that any arbitrary 1-qubit gate can be approximated
with accuracy ϵ using a sequence of O([log(1/2)]τ) gates from the single-qubit universal
gate set {H,S, T}, with τ ∼ 2. Consequently, A circuit containing m C-NOT gates and
single qubit unitaries can be implemented with accuracy ϵ using O(m[log(m/ϵ)]τ) gates
from Clifford+T gate set. This scaling is efficient as it scales poly-logarithmically in 1/ϵ.

1A group at ETHZ has developed a technique to directly implement C-U1 operations without decom-
posing them into C-NOTs and Us.

Chapter 3: The paradigm of digital Quantum Computation 32

Unfortunately, the other step, namely going from arbitrary n-qubit Un to 1-qubit unitaries
and C-NOTs is not efficient as mentioned before.

The digital quantum computation paradigm is not universally efficient and requires
clever algorithmic design choices to achieve satisfactorily accurate soltions.

3.2 Quantum state preparation
Another requirement of the digital paradigm of quantum computation is to prepare the
input to a quantum algorithm. If a quantum circuit has n qubits, then the most general
input state is an arbitrary quantum state of n qubits:

|ψin〉 =
2n−1∑
n=0

αn |n〉 ;
2n−1∑
n=0

|αn|2 = 1 (3.12)

Similar to implementing an arbitrary unitary, preparing an arbitrary quantum state is
not a task that can be carried out efficiently, even on a quantum computer. Here, we only
provide intuitive arguments and recommend references like [3] for rigorous statements.

One obvious way to prepare an arbitrary input state |ψin〉 would be to start from a
standard state, say |0〉, and use a unitary transformation:

|ψin〉 = Uin |0〉 (3.13)

where the state preparation unitary Uin, can be decomposed into elementary operations
of the quantum computer itself. However, as we have seen, this decomposition is not
efficient in the most general case. It can be shown that an arbitrary state preparation
unitary Uin, requires O(2n) quantum gates to approximate it [3].

An important remark is that the complexity of preparing an arbitrary state need not
be the same as that of preparing an arbitrary unitary. For state preparation, we have
the additional freedom that we can choose the unitary Uin and the standard state |ψ0〉
we start from. Hence, it might be less complex to prepare a state than to implement
an arbitrary unitary. nevertheless, preparing an arbitrary state |ψ〉 may require O(2n)
operations in most cases. Both statements are proven by a simple counting argument
about the number of final combinations and the finiteness of the set of quantum gates.

Therefore, for quantum computing, we will simply assume to always start from |00...0〉.
Again, the skill of quantum scientist is that of devising useful algorithms that require as
an input a state |ψin〉 that can be prepared efficiently from |00...0〉, using additional (but
efficient) initialization circuits.

One example that occurs frequently is the total superposition state:

|ψin〉 =
1√
2n

2n−1∑
j=0

|j〉 . (3.14)

This state can be efficiently prepared using only n Hadamard gates.

33 3.3 Readout

.

.

.

|0〉 H
|0⟩+|1⟩√

2

|0〉 H
|0⟩+|1⟩√

2

|0〉 H
|0⟩+|1⟩√

2

|ψin〉 =
(
|0〉+ |1〉√

2

)⊗n

=
1√
2n

(|00...0〉+ |00...1〉+ |11...1〉) (3.15)

This state is useful in achieving quantum parallelism (more on this in the next lecture) be-
cause any function f : {0, 1}n → {0, 1}n, when applied to |ψin〉, is applied simultaneously
(in superposition) to all possible classical inputs |n〉.

3.2.1 Bell states
Finally, it is important to note that the complexity of preparing a state is not related to
its level of entanglement. There are examples of highly entangled states that admit quite
simple preparation circuits, like the Bell states.∣∣Φ+

〉
= |B00〉 =

1√
2
(|00〉+ |11〉) ,

∣∣Φ−〉 = |B10〉 =
1√
2
(|00〉 − |11〉)∣∣Ψ+

〉
= |B01〉 =

1√
2
(|01〉+ |10〉) ,

∣∣Ψ−〉 = |B11〉 =
1√
2
(|01〉 − |10〉)

(3.16)

The indexing used is quite handy since it allows us to transform among the Bell states
using |Bij〉 = Zi

(0)X
j
(1) |B00〉, where the subscripts represent the qubit on which the gate

acts. The state |B00〉 can be easily prepared by applying a C-NOT after a Hadamard
gate on the state |00〉.

|0〉 H

|0〉

|B00〉

3.3 Readout
The act of measuring the outputs of a quantum circuit is known as readout. Reading out
the results from a quantum circuit must be done through quantum measurement. Owing
to the measurement postulate, (most of the time) this will result in state collapse and
thus loss of quantum information initially stored in the output state |ψout〉.

One strategy to improve this scenario is to devise probabilistic quantum algorithms–
algorithms that are executed repeatedly from the same initial state |ψin〉, and the result
of the calculation is inferred statistically by measuring the output after each run. As we
will see, most quantum algorithms are probabilistic.

Chapter 3: The paradigm of digital Quantum Computation 34

In general, we might want the ability to measure an arbitrary observable Ô on the output
state |ψout〉. However, as we will see, similar to the input state preparation, we don’t
necessarily have to measure Ô.

We see this by showing how we can compute the expectation value or the probabilities of
the different outcomes while measuring an observable Ô on a state |ψ〉 using a quantum
computer. We know that a measurement of Ô will give an eigenvalue λj of Ô as a
result and make the state collapse onto the eigenvector |λj〉 of Ô corresponding to the
obtained eigenvalue. The probability of getting the outcome λj is given by p(λj) =

| 〈ψ|λj〉 |2 and from Equation 2.19, the expectation value is given by 〈Ô〉 =
∑

j p(λj)λj =∑
j λj| 〈ψ|λj〉 |2.

Now, consider the change of basis unitary UÔ, such that UÔ |j〉 = |λj〉. This unitary can
be easily constructed by arranging the vectors |λj〉 along the columns.

UÔ =


... ... · · · ...
|λ1〉 |λ2〉 · · · |λn〉
... ... · · · ...

 (3.17)

Using this, we can write the expectation as

〈Ô〉 =
∑
j

λj| 〈ψ|λj〉 |2

=
∑
j

λj| 〈ψ| (UÔ |j〉) |
2

=
∑
j

λj| (〈ψ|UÔ)︸ ︷︷ ︸
〈ψ̃|

|j〉 |2,

(3.18)

An alternative proof could be to show that the probability of getting the outcome λj upon
measuring Ô on the state |ψ〉 is the same as the probability of getting the outcome j while
measuring |ψ̃〉 in the computational basis. Let |ψ〉 =

∑
j αj |λj〉. Then, p(λj)|ψ⟩ = |αj|2.

Now, |ψ̃〉 = U †
Ô
|ψ〉 = U †

Ô

∑
j αjUÔ |j〉 =

∑
j αj |j〉. Hence, p(j)|ψ̃⟩ = |αj|2 = p(λj)|ψ⟩.

where, |ψ̃〉 = U †
Ô
|ψ〉.

Measuring an observable Ô on the state |ψout〉 is equivalent to applying the unitary
U †
Ô

on the state and then measuring in the computational basis {|j〉}.

Note: We assume here that the observable Ô is non-degenerate. That is, no two eigenvec-
tors share the same eigenvalue. This assumption is motivated by the fact that measuring
an observable with degenerate eigenvalues extracts less information about the state and
that is undesirable for efficiently garnering information about the output state.

For any observable, the first-order (expectation) and higher-order moments depend only
on the probability distribution of the outcomes and the readout of a quantum algorithm is
essentially the measurement of the probabilities p(j). Similar to input state preparation,
where we start off with the |0 . . . 0〉 state and apply a state preparation unitary, here, we

35 3.3 Readout

can then assume that only measurements on the computational basis are needed, pro-
vided we can apply an additional unitary UÔ to the algorithm’s output. As before, not
all unitaries can be applied efficiently. Hence, again, the goal of a quantum scientist is to
design algorithms where relevant information can be measured efficiently in the compu-
tational basis. That is, design observables Ô such that UÔ can be realized efficiently. We
now mention two subtle yet important principles, which after reading once, seem obvious.

3.3.1 Principle of deferred measurement
Measurements can always be deferred at the end of the circuit. If a measurement is
used to control the execution of a gate on another qubit, then one may replace this by a
quantum-controlled gate.

U

=

U

The double wire is the symbol for a classical bit. The equality above can be easily proved
by comparing the outputs. This is useful as it allows us to segregate the execution and
readout stages in a quantum computing architecture.

3.3.2 Principle of implicit measurement
Quantum systems that are not perfectly isolated often leak information to the environ-
ment through various processes (noise, dissipation, decoherence, etc). These processes
might destroy quantum resources like entanglement or superposition and result in states
that behave as if they are collapsed state. This process is also known as an implicit
measurement, where the effect of the dissipative/decohering processes can be thought of
as the effect of an (imaginary) implicit measurement. Do not worry if this is not clear
right now. We shall study this in greater detail when we study density matrices.

Bibliography

[1] John Preskill. Lecture notes for physics 229: Quantum information and computa-
tion. http://theory.caltech.edu/~preskill/ph229/, 1998. California Institute
of Technology, Last accessed: September 6, 2024.

[2] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Infor-
mation. Cambridge University Press, Cambridge, 10th anniversary edition edition,
2010.

[3] Scott Aaronson. The complexity of quantum states and transformations: From
quantum money to black holes, 2016.

[4] Jules Tilly, Hongxiang Chen, Shuxiang Cao, Dario Picozzi, Kanav Setia, Ying Li,
Edward Grant, Leonard Wossnig, Ivan Rungger, George H. Booth, and Jonathan
Tennyson. The Variational Quantum Eigensolver: a review of methods and best
practices. Physics Reports, 986:1–128, November 2022. arXiv:2111.05176 [quant-
ph].

[5] M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo,
Keisuke Fujii, Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and
Patrick J. Coles. Variational quantum algorithms. Nature Reviews Physics, 3(9):625–
644, September 2021. Number: 9 Publisher: Nature Publishing Group.

[6] Dmitry A. Fedorov, Bo Peng, Niranjan Govind, and Yuri Alexeev. VQE Method: A
Short Survey and Recent Developments, August 2021. arXiv:2103.08505 [quant-ph].

[7] Yudong Cao, Jonathan Romero, Jonathan P. Olson, Matthias Degroote, Peter D.
Johnson, Mária Kieferová, Ian D. Kivlichan, Tim Menke, Borja Peropadre, Nicolas
P. D. Sawaya, Sukin Sim, Libor Veis, and Alán Aspuru-Guzik. Quantum Chem-
istry in the Age of Quantum Computing. Chemical Reviews, 119(19):10856–10915,
October 2019. arXiv:1812.09976 [quant-ph].

[8] Sukin Sim, Peter D. Johnson, and Alán Aspuru-Guzik. Expressibility and Entan-
gling Capability of Parameterized Quantum Circuits for Hybrid Quantum-Classical
Algorithms. Advanced Quantum Technologies, 2(12):1900070, 2019. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/qute.201900070.

[9] Han Qi, Sihui Xiao, Zhuo Liu, Changqing Gong, and Abdullah Gani. Variational
quantum algorithms: fundamental concepts, applications and challenges. Quantum
Information Processing, 23(6):224, June 2024.

36

http://theory.caltech.edu/~preskill/ph229/

37 Bibliography

[10] Sam McArdle, Suguru Endo, Alán Aspuru-Guzik, Simon C. Benjamin, and Xiao
Yuan. Quantum computational chemistry. Reviews of Modern Physics, 92(1):015003,
March 2020. Publisher: American Physical Society.

Chapter 4

Quantum Algorithms

4.1 Quantum algorithms and quantum advantage
Quantum algorithms, like classical algorithms are a series of quantum operations (circuits)
that have been designed to solve a particular task efficiently. As mentioned in the previous
chapter, we leverage quantum effects like entanglement and interference to encode and
decode the information we need, with a higher efficiency than on a classical computer.
However, it is very important to keep in mind that coming up with such schemes is a
fundamentally hard task and sometimes requires decades of research, of course, with a
(sizable) bit of good luck!

We will now study the first two instances of problems where quantum advantages have
been demonstrated. That is, problems which are designed to be difficult for a classical
computer to solve with sub-exponential complexity, but are easy to solve on a quantum
computer.

4.2 The Deutsch algorithm
The Deutsch algorithm is the first quantum algorithm that exemplifies the quantum
speedup over a classical computational task. Published in 1985, it worked as the birth
of quantum computing as an applied domain of research in computer science. It also
illustrates the idea of quantum parallelism and how it can be leveraged to gain a quantum
advantage.

Problem statement: Given a function f : {0, 1} → {0, 1} which maps 1 bit to 1 bit,
we want to determine if f(0) = f(1).

Classical solution: To classically solve this problem, we would need to evaluate the
function f at least 2 times.

Quantum solution: We can answer this question by evaluating the function f only
once but on a quantum computer.

Consider we have a quantum “oracle” that applies f(x), namely, it applies a two-qubit
(reversible) unitary:

Uf : |x〉 |y〉 → |x〉 |y ⊕ f(x)〉 (4.1)

38

39 4.2 The Deutsch algorithm

where ⊕ is sum modulo 2. That is, 1⊕ 1 = 0⊕ 0 = 0 and 1⊕ 0 = 0⊕ 1 = 1.

Hence, Uf flips the bit y if f(x) = 1. Further, (obviously) it acts linearly on quantum
superpositions. The quantum circuit of the algorithm is given below.

|0〉 H

Uf

H

|1〉 H

|ψ0〉 |ψ1〉 |ψ2〉 |ψ3〉

Let’s compute the wave functions.

|ψ0〉 = |01〉

|ψ1〉 =
1

2
(|0〉+ |1〉)(|0〉 − |1〉)

|ψ2〉 =
1

2
((−1)f(0) |0〉+ (−1)f(1) |1〉)(|0〉 − |1〉)

|ψ3〉 =
1

2
√
2

{(
(−1)f(0) + (−1)f(1)

)
|0〉+

(
(−1)f(0) − (−1)f(1)

)
|1〉
}
(|0〉 − |1〉)

(4.2)

Upon measuring the first qubit, we get,

f(0) = f(1) =⇒ p(0) = 1, p(1) = 0

f(0) 6= f(1) =⇒ p(0) = 1, p(1) = 1.
(4.3)

Hence, just by measuring the first qubit we can tell if the function f is balanced or not for
the outcomes 0 and 1 respectively. Therefore, we have solved the problem by evaluating
the function f , through the oracle Uf , only once!

How is this possible? We achived this through a two step process.

1. The first layer of Hadamard gates created a superposition of the four possible 2
qubit basis states, namely, |00〉 , |01〉 , |10〉 and |11〉. This ensures that all the states
are evaluated in one go and is hence known as quantum parallelism. However, this
does not guarantee that we can extract all this information freely.

2. For extracting the encoded information optimally, we use a technique called phase
kickback along with the second Hadamard gate on the control qubit. This is the
tricky part–using quantum effects (interference) and clever measurements to ensure
that the result of the collapse helps us gain the information we need.

Phase kickback: Consider the action of Uf on |ψ1〉 = 1√
2
(|0〉 |−〉+ |1〉 |−〉)

|00〉 − |01〉
Uf−→ |0f(0)〉 − |0f(0)〉 = |0〉 (−1)f(0) |−〉

|10〉 − |11〉
Uf−→ |1f(1)〉 − |1f(1)〉 = |1〉 (−1)f(1) |−〉

(4.4)

Since these phases are a global phases on the second qubit in state |−〉, they can be kicked
back onto the first qubit. Then, when we consider the joint state of the two qubits, these
phases introduce a relative phase in |ψ2〉. This phenomenon of kicking back the phase is
known as phase kickback.

Chapter 4: Quantum Algorithms 40

The second H gate then leverages this relative phase to modify the amplitudes of the
first qubit. The H gate is a unitary transform between the Z basis |0〉 , |1〉 to the X basis
|+〉 , |−〉. When we apply the second H gate, we go from having indiviudal phases on |0〉
and |1〉, to having the (normalized) sum and the difference of these phases on |0〉 and
|1〉, respectively. This is precisely because the H gate transforms the states |0〉 and |1〉,
to the (normalized) sum and the difference of these states.

The algorithm works owing to (a) quantum parallelism by preparing a superpositon of
states with the required information, (b) evaluating the objective function through the
oracle, (c) phase kickback that can be encoded as a relative phase in the computational
basis and gives rise to interference (d) which is later leveraged for extracting the required
information from the measurement amplitudes. The beauty of the Deutsch’s algorithm
is that it already contains all the ingredients that build up most of the more complex
quantum algorithms.

More importantly, it highlights the difference between quantum parallelism and classi-
cal randomized algorithms. We might be tempted to interpret |0f(0)〉 + |1f(1)〉 as a
probabilistic classical computation where with equal probability we either compute f(0)
or f(1). This is not true since the two events on a classical computer will be mutually
exclusive. However, on a quantum computer, these two amplitudes interfere and hence
give us a more efficient way to extract the information we need. This is an excellent
example of what we emphasised in the previous lecture.

It may seem that we have indeed been lucky with the simplicity/structure of the problem
and that it may be harder to encode and then extract information from a superposition
for an arbitrary problem. And yes, that statement is partly true. We will soon see
a generalized quantum Fourier Transform which will enable us to design more general
algorithms and encompass broader classes of problems.

Deutsch’s algorithm is very simple and, while it shows the principle of quantum speedup,
it does not say anything about the scaling of the speedup with the size of the problem (it
has fixed size). For this, there were three historical algorithms that demonstrated several
principles: the Deutsch-Jozsa (1992), Bernstein-Vazirani (1997), and Simon’s algorithm
(1997). We now investigate the first in this lecture and then explain the other two after
a brief discussion on quantum complexity in the next lecture.

4.3 The Deutsch-Jozsa algorithm
The Deutsch-Jozsa algorithm is an extension of the Deutsch algorithm to multiple qubits,
consequently demonstrating the advantage with scaling the size of the algorithm.

Problem statement: Given a “black-box” function f(x), such that, f : {0, 1}n → {0, 1}
the task is to decide if it is constant or balanced. Here, constant means f(x) = 0 ∀ x or
f(x) = 1 ∀ x, while balanced means that there are 2n−1 values of x for which f(x) = 0 and
2n−1 values for which f(x) = 1. The problem is the natural generalization of Deutsch’s
algorithm.

Classical solution: To classically solve this problem, we could try to be a bit smart
and play our luck by randomly selecting values of x, and if f(xi) 6= f(xj) for any two
trials i, j, then we can safely conclude that f is balanced. However, in the worst-case

41 4.3 The Deutsch-Jozsa algorithm

scenario, to determine the answer with complete uncertainty, we would need to evaluate
the function 2n−1 + 1 times.

Quantum solution: The quantum circuit is also a natural generalization of the circuit
for Deutsch’s algorithm.

... ...

|0〉 H

Uf

H

N qubits
|0〉 H H

...

|0〉 H H

|1〉 H

x x

y y ⊕ f(x)

|ψ0〉 |ψ1〉 |ψ2〉 |ψ3〉

The principle is the same:

|ψ0〉 = |01〉

|ψ1〉 =

 1√
2n

∑
x∈{0,1}n

|x〉

⊗ (|0〉 − |1〉√
2

)
.

(4.5)

Here, |x〉 ∀ x ∈ {0, 1}n is the quantum state on n qubits, where each qubit is in the state
|0〉 or |1〉, depending on the corresponding bit in the binary representation of x.

Exercise: Show that H⊗n transforms |0〉⊗n to 1√
2n

∑2n−1
x=0 |x〉.

Hint: We can notice a pattern by starting with n = 1, 2.

|ψ2〉 =
1√
2n

∑
x

(−1)f(x) |x〉 ⊗
(
|0〉 − |1〉√

2

)
(4.6)

Then, the oracle unitary Uf gives rise to the phase kickback. To compute |ψ3〉, we first
write the action of H on a single qubit state |y〉 ; y = 0, 1, in a more concise notation.

H |y〉 = 1√
2

1∑
z=0

(−1)yz |z〉 (4.7)

Now, in tha case of N qubits, for |x〉 = |x1x2 . . . xn〉, we get,

H⊗n |x1...xn〉 =
1√
2n

∑
z1...zn∈{0,1}n

(−1)x1z1+...+xnzn |z1...zn〉 . (4.8)

Chapter 4: Quantum Algorithms 42

We introduce the bit-wise inner product modulo 2 as x.z = x1z1 + ...+ xnzn(mod2) and
hence can write

H⊗n |x〉 = 1√
2n

∑
z

(−1)x.z |z〉 . (4.9)

Combining the above few results, we can obtain |ψ3〉 as,

|ψ3〉 =

 1

2n

∑
x,z∈{0,1}n

(−1)x.z+f(x) |z〉

⊗ (|0〉 − |1〉√
2

)
. (4.10)

Let us focus on the amplitude of the |z = 0〉 component, given by 〈x = 0|ψ3〉.

1

2n

∑
x

(−1)f(x) =

{
0 if f is balanced.
±1 if f is constant = 0 or 1 respectively ∀ x.

(4.11)

The probability of measuring |z = 0〉 upon measurement is given by the modulus squared
of the amplitude | 〈z = 0|ψ3〉 |2. If f is balanced, then the probability of measuring |z = 0〉
is exactly 0 since half the terms will each contribute a (−1)0 = +1 and the other half
will each contribute (−1)1 = −1 to the sum, hence nullifying the total amplitude and
probability.

On the other hand, if f is constant, then the each term contributes ±1 depending on
the constant value of f , 0 or 1, respectively. Nonetheless, for both types of constant
functions, the probability of measuring |z = 0〉 is 1. Therefore, just by performing, one
measurement, we can solve the problem with complete certainty.

Note: In this lecture, we have assumed the oracle takes the same time to execute indepen-
dent of n. That is, the complexity of the oracle is O(1). Hence, the quantum algorithm
runs in a time order of what it takes to compute f(x) once. This assumption on the
oracle is very strong and absolutely non-trivial in general. This is why sometimes such
speedups are called “relativized” speedups because they are obtained with the help of an
oracle. Naturally, this opens up another research direction focused on developing efficient
oracles for a given problem. The best example of such a problem, will be the factorisation
problem which we shall discuss in the upcoming lectures.

Most quantum algorithms assume an efficient oracle and making their advantage
relativised. Therefore, in addition to cleverly leveraging quantum effects, we also need
to focus on efficient oracle realisations. This is one of the many gentle reminders of

the non-universality of quantum computing.

In the beginning, we mentioned that the worst-case complexity for deterministically solv-
ing the problem is to evaluate the function 2n−1 + 1 times. However, since quantum
algorithms are, in general, probabilistic, it makes sense to compare them with classical
probabilistic algorithms. These are algorithms that give us the answer with some confi-
dence 1− ϵ. In our case, we may content ourselves with knowing whether f is balanced
or constant with probability P = 1− ϵ with ϵ small.

If the function is balanced, then the probability of getting the same answer for k queries
is given by p = 1/2k−1. If this happens, then we may wrongly guess that f is constant.
Hence, the probability of us guessing wrong is p. Now, we want the error rate to be

43 4.3 The Deutsch-Jozsa algorithm

p ≤ ϵ =⇒ 2−k+1 ≤ ϵ =⇒ 2k−1 ≥ 1
ϵ

=⇒ k ≥ 1 + log
(
1
ϵ

)
. Hence, we can decrease the

error rate exponentially with the number of queries k, we make. Hence, the task is not
exponentially hard classically.

Deutsch-Jozsa algorithm demonstrates a speedup, but only polynomial in n for fixed ϵ,
that too with access to an oracle, and only in the worst case scenario. Can we relax
any of these restrictions? Yes, partly. Thanks to two quantum algorithms developed in
1997, the Bernstein-Vazirani and Simon’s algorithm. We shall first study a bit of classical
and quantum computational complexity theory, which will help us better appreciate the
advantages introduced by Bernstein-Vazirani and Simon’s algorithms in the next lecture.

Chapter 5

Computational Complexity

Having introduced the two foundational quantum algorithms, we will now explore the
broader landscape of classical and quantum complexity. This will set the stage for study-
ing two additional algorithms that offer even more significant quantum advantages. The
aim of this lecture is to provide a high-level understanding of the complexity framework
and key insights behind these algorithms without delving into all the technical details.
It is perfectly fine if some concepts feel abstract at this stage—they will become clearer
as we study additional algorithms in more depth later on.

5.1 Computational complexity
Computational complexity (classical or quantum) is the study of the inherent difficulty of
solving a given problem. The complexity is defined with regards to how much resource is
required by an algorithm that solves the problem. We shall begin by discussing classical
computational complexity and then move onto quantum computational complexity.

5.1.1 Classical computational complexity
Any classical problem is associated with two kinds of complexities1.

• Time complexity: The time taken by the algorithm to run. This scales directly
with the number of operations performed by the algorithm.

• Space complexity: The space or memory consumed by the algorithm.

There exists an inevitable trade-off between the two. That is, if we were to reduce the
time complexity of an algorithm, we would inevitably increase its space complexity. In
these lectures, we shall mainly focus on studying the time complexity and the resulting
complexity classes in which we can classify problems.

Before we begin, to ensure a fair comparison, it is crucial to mention that any problem can
be modeled as an equivalent decision problem. A decision problem is a yes/no question
on a plausibly infinite set of inputs. This equivalence is the result of years of work by

1These complexities are usually considered with respect to the best algorithm that solves the problem.

44

45 5.2 Classical deterministic complexity classes

Turing, Cook, Levin and Karp2; which for good reason, shall be skipped in these lectures.
Nonetheless, to convince ourselves, we demonstrate the same through a few examples.

• Search: Search for an element x∗ in a set S.
Equivalent decision problem: For any element y ∈ S, ask if y = x∗?

• Optimization: Find the value x∗ for which the function f(x) is minimal.
Equivalent decision problem: For each input x, ask if there exists an element y such
that f(y) < f(x)?

• Sudoku: The objective is to solve a Sudoku puzzle.
Equivalent decision problem: For the current state of the n×n grid, does there exist
a set of numbers which, when filled in the blanks, completes the puzzle?

• Chess: The objective is to win a game of chess in some number of moves k.
Equivalent decision problem: Given the current state of the game, can one side (say
White) guarantee a win in the next k moves?

5.2 Classical deterministic complexity classes
We define the complexity classes with regard to the time complexity, equivalently, the
number of operations or decisions we need to make to reach the solution. That is, “How
many yes/no questions do we need to answer before finding a solution?” Further,

• Do we want to find the solution or simply verify a given candidate solution?

• Do we want an answer with absolute certainty p = 1 or are we fine with a proba-
bilistic answer with p = 1− ε?

• Do we want our algorithm to be classical or quantum?

Based on these criteria, we motivate the different classical and quantum complexity
classes. The classes we state below are with regard to the current best algorithms for
solving these problems. It is quite plausible that a problem in a certain class might be
shifted to a different class in the future upon discovering a more efficient algorithm.

5.2.1 Tractability
Tractable problems are problems for which there exists an algorithm that provides a
solution in O(poly(n)) time. That is, the time it takes to solve such problems scales
polynomially with the input size n.

Example: Searching for an element in a n element sorted array takes O(log n) time.

Intractable problems on the other hand are problems for which the best algorithm has
an exponential run-time O(exp(n)).

Example: The travelling salesman problem. Given n cities and the distance between
them, we need to find a route such that we visit all the cities but cover the minimum
possible distance. The best algorithm in the general case is the Held-Karp algorithm with
a complexity O(n22n).

2Please see the Wikipedia pages on Decision Problems and the Cook-Levin Theorem. If you would
like to discuss these topics further or need more resources, please feel free to reach out :)

https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://en.wikipedia.org/wiki/Held%25E2%2580%2593Karp_algorithm%23
https://en.wikipedia.org/wiki/Decision_problem
https://en.wikipedia.org/wiki/Cook–Levin_theorem

Chapter 5: Computational Complexity 46

Sub-exponential or quasi-polynomial problems are problems that can be solved faster than
exponential time but slower than polynomial time. These exist in a grey area between
tractable and intractable problems and the choice to include them in either of the classes
is usually nuanced with good reason.

Example: Given two graphs G1 = (V1, E1) and G2 = (V2, E2), where V1 and V2 are sets of
vertices and E1 and E2 are sets of edges, determine if there exists a bijection f : V1 → V2
such that for every pair of vertices u, v ∈ V1, (u, v) ∈ E1 if and only if (f(u), f(v)) ∈ E2.
In other words, G1 and G2 are said to be isomorphic if there exists a one-to-one mapping
of vertices f : V1 → V2 such that G1 and G2 have identical edge structures. The best
algorithm is Babai’s from 2015 and has a quasi-polynomial complexity O(2c logn), where
c is a constant.

5.2.2 P
Polynomial (P) is the set of all problems for which we can find a solution using a polyno-
mial time O(poly(n)) algorithm. This is the same set of problems as tractable problems.

5.2.3 NP
Non-deterministic polynomial (NP) is the set of problems where if we are given a candi-
date input, then we can verify if this candidate is truly a solution or not, in polynomial
O(poly(n)) time.

Integer factorization: Given an integer M (with n bits in its binary representation), find
two non-trivial (> 1) integer factors k1 and k2, such that M = k1k2. If we were to brute
force the task by searching for factors starting from 2, then the complexity would be
O(2n), where in the worst case, M = 2n− 1 is prime and it takes us O(2n) tries to figure
that out. If we act smarter and only check the odd numbers, even then, the complexity
would be O(2n/2). Nonetheless, given two candidates k1 and k2, we can easily verify if
their product is equal to M or not in polynomial time.

Naturally, all problems where we can find the true solution in polynomial time (hence are
automatically verifiable), also belong to this set, that is, P ⊂ NP , as shown in Figure 5.1.

Further, there are some arguments that NP problems can be solved in polynomial time
using a truly random Turing machine–a computer that explores all possible paths si-
multaneously at each step and halts when it finds the solution. However, having such
a machine is far from reality as explained in ??, and hence it is conjectured whether
P

?
= NP , and we would like to believe NO! Some of us might be wondering Why are they

called non-deterministic problems? We provide a brief answer for the same in ??, but
skip it for now since it is not required.

5.2.4 NP-Complete
NP-Complete (NPC) is a special subset of NP problems. The speciality being that we
can reformulate/map any NP problem as an NPC problem. Since NPC problems are
also NP problems, it means that all NPC problems can be reformulated as one another.

Boolean satisfiability: The first and most general example of the same is the boolean
satisfiability or n-SAT problem. The general n-SAT problem is any possible boolean

https://arxiv.org/abs/1512.03547

47 5.2 Classical deterministic complexity classes

NP

P

Figure 5.1: Illustration of P ⊂ NP .

expression with n boolean variables. For example, a 3-SAT problem can be f(x) =
(x1 ∧ x2) ∨ (x2 ∧ x3), where xi ∈ {0, 1} ∀ i = 1, 2, 3, the xi represents the negation
operation 0 ↔ 1, the ∧ represents the AND operation and the ∨ is the OR operation.
The Cook-Levin theorem states that any other NP and even P (since P ⊂ NP) problem
can be reformulated/mapped to an n-SAT problem.

Claim: Although NPC is a special subset of NP problems (NPC ⊂ NP), solving any
NPC problem would mean we can solve all NP problems.

• Firstly, if we have an algorithm to solve one NPC problem, we can solve all of them,
since all NPC problems can be mapped to one another.

• Further, since we can map any NP problem onto an NPC problem, this would also
mean, we can use our algorithm to solve any NP problem.

Hence, we have now established two relations. Firstly, P ⊂ NP and now NPC ⊂ NP .
However, NPC and P are not the same. In fact, the problems in NPC are NP problems,
and hence cannot be solved in polynomial time, but rather only candidate inputs can be
verified in polynomial time, as shown in Figure 5.2.

NP

P

NPC

Figure 5.2: Illustration of P ⊂ NP and NPC ⊂ NP .

5.2.5 NP-Hard
NP-Hard (NPH) is a set of problems made up of two classes: (a) NPC problems and
(b) problems that are beyond NP . These are problems that cannot be solved, nor can
we verify if a candidate input is a true solution, within polynomial time.

Chapter 5: Computational Complexity 48

NP

P

NPC

NPH

Figure 5.3: An overview of the deterministic classical complexity classes.

Examples: Two main examples of problems outside NP are a game of chess and the
Halting problem. The latter is truly a pathological problem that is impossible to solve.

This concludes the discussion on the classical deterministic computational complexity,
and we present an overview of the same in Figure 5.3. Now, we shall look at probabilistic
complexity classes. Where, we relax the constraint of finding or verifying solutions with
complete certainty.

5.3 Probabilistic computational complexity classes
Before jumping into the probabilistic complexity classes, lets briefly recap P and NP .
P is the set of problems whose solution can be found in polynomial time, whereas NP
is the set of problems where we can only verify if a given input is a solution or not,
in polynomial time. However, the process of finding/proposing the candidate may or
may not run in polynomial time or we might have to propose exponentially many such
candidates. This is where the probabilistic algorithms step in.

5.3.1 BPP
Bounded error probabilistic polynomial BPP is the set of problems for which we can use
a polynomial time algorithm to predict the correct candidate with a success probability
p > 2/3. This set BPP is related to both P and NP .

• BPP encompasses the set P , that is, P ⊂ BPP since p = 1 for all problems in P .

• BPP is simply the subset of NP problems for which we can predict the correct
answer (with probability p > 2/3) using a polynomial time algorithm. At the same
time, not all NP problems can be solved probabilistically with a success probability
> 2/3, in polynomial time. Hence, BPP ⊂ NP but not the other way round. This
gives us P ⊂ BPP ⊂ NP , as shown in Figure 5.4.

Running a BPP algorithm T times would result in an error probability of (1−p)T , which
goes to 0, exponentially fast with T . However, for any finite T , there still exists a (small
but non-zero) probability of getting the wrong answer. This is an important distinction

49 5.3 Probabilistic computational complexity classes

between BPP and P , where in the latter, we are sure to obtain the true solution with a
finite (in fact polynomially large) number of operations.

Interestingly, the number of problems that are in BPP but not in P is decreasing due
to the process of de-randomization. Where, we take a polynomial-time probabilistic
algorithm that solves some problem with a success probability p > 2/3, and develop a
deterministic version of the same. Hence solving the problem with complete certainty, in
polynomial time. This process is highly non-trivial and often takes years if not decades
to complete. These advancements have led to the conjecture P ?

= BPP 3, which again,
we would like to believe is not true!.

Primality test: Given an n-bit integer M , the task is to determine if it is prime or
not. There existed no polynomial time deterministic algorithm before Agrawal–Kayal–
Saxena’s deterministic algorithm (2002).

Polynomial identity testing: One of the problems that has not been de-randomized yet,
is the polynomial identity testing problem. Given two polynomials in n variables
f1(x1, x2, . . . , xn) and f1(x1, x2, . . . , xn), the problem is to find whether f1 and f2 are
the same polynomial. Equivalently, we need to check if their difference is zero, that
is, f1(x1, x2, . . . , xn) − f1(x1, x2, . . . , xn) = 0 ∀ xi ∀ i = 1, 2, . . . , n. The Schwartz–
Zippel algorithm solves this problem in polynomial time with a success probability p >
2/3.

NP

P

NPC

NPH

BPP

Figure 5.4: P ⊂ BPP ⊂ NP .

5.3.2 MA
Building upon the BPP set, Merlin-Arthur (MA) is the set of problems where, we can
solve it using a Merlin-Arthur strategy. Here, Merlin provides a candidate input and
Arthur uses a polynomial time probabilistic algorithm to verify if the given candidate is
truly a solution or not. Arthur’s verifier needs to be correct at least two-thirds of the
time.

3Please see ?? for more details.

https://en.wikipedia.org/wiki/AKS_primality_test
https://en.wikipedia.org/wiki/AKS_primality_test
https://en.wikipedia.org/wiki/Schwartz–Zippel_lemma
https://en.wikipedia.org/wiki/Schwartz–Zippel_lemma

Chapter 5: Computational Complexity 50

1. If Merlin provides a true solution, then Arthur’s verification algorithm should be
able to verify that indeed it is solution at least two-thirds of the time, that is, with
a probability p1 > 2/3.

2. If Merlin provide a false candidate, then Arthur’s verification algorithm should
mistake it to be a true solution not more than two-thirds of the time, that is, with
a probability p2 < 1/3. Equivalently, it should spot out the false candidates at least
two-thirds of the time, that is, with a probability 1− p2 > 2/3.

Just like BPP randomizes the process of finding the candidate, MA, takes this a step
further and makes the verification process also probabilistic.

• BPP ⊂ MA. If a problem can be solved using a BPP algorithm, then Arthur’s
verification procedure is to simply run the BPP algorithm, regardless of Merlin’s
input. Hence, all BPP problems can be solved using a trivial MA algorithm.

• NP ⊂ MA. Similar to BPP being the probabilistic version of P , that is, P ⊂
BPP , with p = 1, here,MA is the probabilistic version of NP . That is NP ⊂MA,
with Arthur’s verification process having a probability of success p1 = 1.

Finally, analogous to the P ?
= NP conjecture, we also have BPP ?

=MA. And under the
conjecture of de-randomization, we have NP ?

=MA.

NP

P

NPC

NPH

BPP

MA

Figure 5.5: The complete hierarchy involving deterministic and probabilistic classical
comptational complexity classes.

5.3.3 Summary
As a recap, we go over the classes briefly. P is the set of all polynomial-time solvable
problems and BPP is the set of such problems but with a success probability p > 2/3.
NP is the set of all polynomial-time verifiable problems and MA is the set of such
problems but the verifier (Arthur) succeeds with a probability p1 > 2/3. Additionally,
in the deterministic case, there is a special subset of NP problems, called NPC, which

51 5.4 Quantum Computational Complexity

are problems onto which we can map all NP problems. This special subset, plus all the
problems that are not in NP , make up the NPH set.

We have covered two kinds of conjectures.
Regarding hardness P ?

= NP , BPP ?
=MA.

Regarding de-randomization P
?
= BPP , NP ?

=MA.

5.4 Quantum Computational Complexity
Quantum computational complexity involves the characterisation of problems based on
the quantum resources required to solve them. We can define time and space complexity
in a very similar manner as in the classical case. Like the classical complexity classes, we
can also define quantum complexity classes, with regards to the time complexity of the
quantum algorithms that solve these problems. Additionally, we shall also highlight the
relations between classical and quantum complexity classes.

5.4.1 BQP
Analogous to BPP , the bounded error quantum probability time (BQP) is the set of
all problems that can be solved using a quantum computer in polynomial time, with a
success probability of p > 2/3. Since classical computations are a subset of quantum
computations, P ⊂ BPP ⊂ BQP , as shown in Figure 5.6. Needless to say, BQP ⊂ NP
since not all NP problems can be solved with a good success probability (p > 2/3) in
polynomial time on a quantum computer.

Quantum integer factorization: Shor’s algorithm solves the integer factoring problem in
O((logN)2 · log logN), with a success probability p > 2/3.

NP

P

NPC

NPH

BPP

MA

BQP

Figure 5.6: The quantum complexity class BQP encompasses BPP which encompasses
P . However, they are all subsets of NP .

https://en.wikipedia.org/wiki/Shor%27s_algorithm

Chapter 5: Computational Complexity 52

5.4.2 QMA
Finally, we introduce QMA, the set of problems where Merlin again provides a candidate
input (quantum state) and Arthur uses a polynomial time quantum algorithm to verify
if the given state is a solution, with the following probabilities.

1. If Merlin provides a solution state, then Arthur’s algorithm should be able to verify
that indeed it is solution, at least two-thirds of the times, that is, with a probability
p1 > 2/3.

2. If Merlin provide a false state, then Arthur’s verification algorithm should mistake it
to be a true solution no more than one-third of the time, that is, with a probability
p2 < 1/3.

It is natural to see that this is simply an extension of MA, where Arthur now has a
polynomial time quantum verification algorithm instead of a classical one. This completes
our overview on quantum and classical computational complexity. We present a graphical
representation of the same in Figure 5.7.

Local Hamiltonian problem: Given a k-local Hamiltonian, the task is to find its ground
state. A k-local Hamiltonian is a Hamiltonian Ĥ =

∑
i Ĥi, where each Ĥi acts on at-most

k qubits. This is a problem which belongs to QMA 4.

NP

P

NPC

NPH

BPP

MA

BQP

QMA

Figure 5.7: A graphical overview of the quantum and classical computational complexity
landscape.

5.5 Oracle separation
While studying the quantum algorithms in the previous lecture (Deutsch and Deutsch-
Jozsa), assumed the existence of an oracle. Even while defining the quantum computation
complexity classes above, we implicitly made the same assumption.

4Try to think why, or wait a few lectures till we study quantum phase estimation :)

53 5.5 Oracle separation

Orcale: An oracle is a black-box that gives us the value of a function f(x) for any input
x, within polynomial time.

The ability of quantum algorithms to perform better than classical algorithms while both
are using an oracle, is known as oracle-relativized advantage or an oracle-separation. This
is by no means an unfair advantage, as both computers have access to the same system.
In fact, this framework establishes a fair basis for comparing classical and quantum
algorithms.

The first few algorithms to demonstrate an oracle separation between the classes BPP
and BQP were the Deutsch-Jozsa, Bernstein-Vazirani and Simon’s algorithm. Deutsch-
Jozsa, although being the first, demonstrates an exponential quantum advantage but only
in the (a) worst case scenario of the problem and (b) the classical algorithm is strictly
deterministic. Bernstein and Vazirani helped drop the first condition and then Simon
helped drop both the conditions.

5.5.1 Bernstein-Vazirani
The Bernstein-Vazirani algorithm (1993) erradicates the need for the first condition and
shows a quasi-polynomial quantum advantage even over the classical algorithm in the
best possible case of the problem.

Problem statement: We are given a function f : {0, 1}n → {0, 1}, which computes
the modulo 2 dot product between the input and a hidden binary string r. That is,
f(x) = x1⊕ r1+x2⊕ r2+ · · ·+xn⊕ rn (mod 2). Our task is to find the hidden bit-string
r. Both classical and quantum computers have access to the oracle which outputs f(x)
for each input x in polynomial time.

Classical solution: The best possible classical solution would require n queries to the
oracle, namely, the strings {100 . . . 0, 010 . . . 0, . . . 00 . . . 1}, each would help us find one
bit from the string r.

Quantum solution: The quantum solution only requires 1 query to determine the
hidden string r.

This algorithm is in very similar spirit as the Deutsch-Jozsa algorithm but here, we show
an advantage even in the best case scenario of the problem as opposed to only the worst
case scenario in Deutsch-Jozsa. However, they both demonstrate an advantage only
over deterministic classical algorithms. Simon’s algorithm demonstrates an exponential
advantage with respect to the best possible probabilistic classical algorithm.

5.5.2 Simon’s Algorithm
Simon’s algorithm was the first quantum algorithm to show an exponential advantage
over the best possible classical probabilistic algorithm, even in the best case scenario.

Problem statement: We are given a function f : {0, 1}n → {0, 1}n with the promise
that there exists a secret n-bit string r, such that for every pair of distinct inputs x,y ∈
{0, 1}n, f(x) = f(y) if and only if y = x⊕ r. In other words, f is a two-to-one function
such that f(x) = f(x ⊕ r) for a hidden string r and outputs distinct values otherwise.
Our goal is to determine the hidden string r.

Chapter 5: Computational Complexity 54

Classical solution: The best classical probabilistic algorithm requires O(2n/2) queries
to the oracle to find r with high probability. This is because, to detect the hidden
periodicity, a classical algorithm needs to find at least two distinct inputs x,y such that
f(x) = f(y), which would require searching through a significant portion of the input
space.

Quantum solution: Simon’s quantum algorithm can find the hidden string r using
only O(n) queries. It leverages quantum parallelism and interference to extract linear
equations for r, which can then be solved classically in polynomial time to identify the
string with high probability.

Simon’s algorithm demonstrates an exponential advantage over the best possible classi-
cal probabilistic algorithm, even in the best-case scenario. This result was historically
significant as it provided one of the first examples of an exponential oracle separation,
highlighting the superiority of quantum algorithms even over the best classical proba-
bilistic approaches. This breakthrough paved the way for revolutionary algorithms like
Shor’s, which we shall study in detail soon.

Chapter 6

Quantum Fourier Space

6.1 The quantum Fourier transform
Being a quantum operation, the QFT is linear, and hence, it is sufficient to study the effect
of the QFT on the basis states. Consider an n-qubit basis state |j〉, where 0 ≤ j ≤ 2n−1
is the integer represented by the n bit binary bit-string representation of the n-qubit
basis. The QFT is then defined as

QFT |j〉 = 1√
2n

2n−1∑
ℓ=0

eijℓ
2π
n |ℓ〉 = 1√

N

N−1∑
ℓ=0

ωjℓN |ℓ〉 , (6.1)

where, N = 2n and ωN = ei
2π
n is the nth root of unity. Equivalently, we can define the

2n × 2n large matrix representation (F) as

F =
1√
N


1 1 1 . . . 1
1 ωN ω2

N . . . ωN−1
N

1 ω2
N ω4

N . . . ω
2(N−1)
N...

1 ωN−1
N ω

2(N−1)
N . . . ω

(N−1)(N−1)
N

 . (6.2)

We can naturally study the effect of applying the QFT to an arbitrary quantum state
|ψ〉 =

∑2n−1
j=0 cj |j〉,

|φ〉 = QFT |ψ〉 = QFT

(
2n−1∑
j=0

cj |j〉

)
=

2n−1∑
j=0

cj QFT |j〉

=
1√
2n

2n−1∑
j=0

cj

2n−1∑
l=0

ωjℓN |ℓ〉 ,

(6.3)

where the ℓth component of the output state |φ〉 =
∑2n−1

ℓ=0 dℓ |ℓ〉 is

dℓ =
1√
2n

2n−1∑
j=0

cjω
jℓ
N . (6.4)

55

Chapter 6: Quantum Fourier Space 56

Hence, |φ〉 = QFT |ψ〉,

d1
d2
...
dℓ
...

d2n−1


=

1√
N



1 1 1 . . . 1
1 ωN ω2

N . . . ωN−1
N

1 ω2
N ω4

N . . . ω
2(N−1)
N...

...
1 ωN−1

N ω
2(N−1)
N . . . ω

(N−1)(N−1)
N





c1
c2
...
ck
...

c2n−1


. (6.5)

It can be seen from Equations 6.4 and 6.5 that the output state vector {d1, d2, . . . , dℓ, . . . d2n−1}
is given by the action of the matrix F on the input state vector {c1, c2, . . . , cj, . . . c2n−1}.

Things seem to be quite straightforward, and indeed they have been. Now, we try to
reformulate the QFT formula in a way that is convenient to implement on a quantum
computer. Following this, we will design a circuit that implements the desired operations.
Owing to its linear nature, it is sufficient to develop a circuit that correctly implements
the QFT for the basis states {|j〉}. 1

• We start by considering the binary representation of the basis states
|ℓ〉 = |ℓ1ℓ2 . . . ℓk . . . ℓn〉 with ℓk ∈ {0, 1} ∀ k = 1, 2, . . . n.

• Then, we remind ourselves that the integer ℓ = ℓ12
n−1 + ℓ22

n−2 + · · · + ℓn2
n−n =∑n

k=1 ℓk2
n−k.

• Finally, ℓ
2n

= 1
2n

∑n
k=1 ℓk2

n−k =
∑n

k=1 ℓk2
−k.

Using this, Equation 6.1 can be rewritten as

QFT |j〉 = 1√
2n

1∑
ℓ1=0

1∑
ℓ2=0

· · ·
1∑

ℓk=0

· · ·
1∑

ℓn=0

exp

[
(i2πj)

n∑
l=1

kl2
−l

]
|ℓ1ℓ2 . . . ℓk . . . ℓn〉︸ ︷︷ ︸


=

1√
2n

1∑
ℓ1=0

1∑
ℓ2=0

· · ·
1∑

ℓk=0

· · ·
1∑

ℓn=0


︷ ︸︸ ︷
n⊗
k=1

exp
[
i2πjℓk2

−k] |ℓk〉


=
1√
2n

n⊗
k=1

(
1∑

ℓk=0

exp
[
i2πjℓk2

−k] |ℓk〉) ,
(6.6)

where, in the last step, we use the result of the following exercise.

Exercise: Show that the “Sum of all the n-qubit tensor product basis states” is the same
as the “Tensor product of n sums of single qubit basis states”.

2n−1∑
k=0

|ℓ〉 =
1∑

ℓ1=0

1∑
ℓ2=0

· · ·
1∑

ℓk=0

· · ·
1∑

ℓn=0

(
n⊗
k=1

|ℓk〉

)
=

n⊗
k=1

(
1∑

ℓk=0

|ℓk〉

)
. (6.7)

Hint: We can notice a pattern by starting with n = 1, 2.
1The following (cumbersome) steps might not seem very straightforward, so please do not hesitate to

review them multiple times or discuss them with others.

57 6.1 The quantum Fourier transform

Continuing from Equation 6.6, we get,

QFT |j〉 =

(
|0〉+

exp
[
i2π
(
j
2

)]
|1〉

√
2

)
⊗

(
exp

[
i2π
(
j
2

)]
|1〉

√
22

)
⊗· · ·⊗

(
exp

[
i2π
(
j
2n

)]
|1〉

√
2

)
(6.8)

QFT |j〉 = 1√
2n

n⊗
k=1

(
|0〉+ exp

[
i2π

(
j

2k

)]
|1〉
)
. (6.9)

6.1.1 The binarized decimal notation
The binarized decimal notation (.

b
) divides a binary bit-string into two parts. On the left

side, we have coefficients (0 or 1) for positive, increasing powers of 2, starting from 0,
and on the right side, we have coefficients for negative, increasing (in magnitude) powers
of 2 starting from -1.

For example,
ab(.

b
)cd = a21 + b20 + c2−1 + d2−2. (6.10)

Consider x ∈ {0, 1}, then,
x

2
= 0(.

b
)x

x

22
= 0(.

b
)0x

...

x

2k
= 0(.

b
)

k−1 zeros︷ ︸︸ ︷
0 . . . 0 x.

(6.11)

For two integers k1 < k2 and x1, x2 ∈ {0, 1}, we get,

x1
2k1

+
x2
2k2

= 0(.
b
)

k1−1 zeros︷ ︸︸ ︷
0 . . . 0 x10 . . . 0︸ ︷︷ ︸

k2−1 zeros

x2. (6.12)

Now, applying this to the binary bit-string representation of an integer j = j1j2 . . . jn, we
get,

j

2
=
j1j2 . . . jn−1jn

2
= j1j2 . . . jn−1(.

b
)jn

j

22
=
j1j2 . . . jn−2jn−1jn

22
= j1j2 . . . jn−2(.

b
)jn−1jn

...
j

2k
=
j1j2 . . . jn−kjn−k+1 . . . jn

2k
= j1j2 . . . jn−k(.

b
)jn−k+1 . . . jn.

(6.13)

Basically, whenever we divide by 2, we shift the binary decimal point to the left by one
place. Hence, if we multiply a number by 2, we shift the binary decimal point to the
right by one place.

Chapter 6: Quantum Fourier Space 58

Exercise: Show that
10011(.

b
)01

2
= 1001(.

b
)101 and 2× 10011(.

b
)01 = 10010110(.

b
)1.

Hint: Try finding the decimal values for the bitstrings on the LHS and RHS for both
cases. The bits to the left of the binary decimal place represent the coefficients of the
non-negative powers of 2 and hence make an integer, whereas the bits to its right represent
the coefficients for the negative powers of two.

We now make one final observation before concluding this cumbersome algebraic process.

exp

[
i2π

(
j

2k

)]
= exp

[
i2π
(
j1j2 . . . jn−k(.

b
)jn−k+1 . . . jn

)]
= exp

i2π some integer︷ ︸︸ ︷
(j1j2 . . . jn−k)


︸ ︷︷ ︸

=1

exp
[
i2π
(
0(.
b
)jn−k+1 . . . jn

)]
,

(6.14)

hence,
exp

[
i2π

(
j

2k

)]
= exp

[
i2π
(
0(.
b
)jn−k+1 . . . jn

)]
. (6.15)

Finally, using the above results, we can rewrite Equation 6.9 as

QFT |j〉 =
n⊗
k=1

 |0〉+ exp
[
i2π(0(.

b
)jn−k+1 . . . jn)

]
|1〉

√
2

 . (6.16)

Before moving towards designing the circuit, we make a very important observation.

The QFT maps basis states to product states and hence does not introduce
any entanglement.

6.1.2 The QFT circuit
To begin designing the circuit, we first try to understand what state we want on each
qubit. We can see this in Equation 6.16, but we can start by simplifying our task. The
immediate statement that we are about to make might not seem well-motivated at first
but it shall be clearer later. If we consider an operation that swaps the states on all
the qubits, that is, it swaps the state of the first qubit with the last, the state of the
second qubit with the second-to-last and so on. We denote this operation by SWAPn and
SWAPn |q1q2 . . . qn−1qn〉 = |qnqn−1 . . . q2q1〉 and SWAPnSWAPn = 1n. Concisely, it swaps
the state of the qubit k with that of qubit n − k + 1. If we apply this operation to the
QFT in Equation 6.16, we get the swapped-QFT,

SWAPnQFT |j〉 =
n⊗
k=1

 |0〉+ exp
[
i2π(0(.

b
)jk . . . jn)

]
|1〉

√
2

 . (6.17)

Now, the relative phases (the exponents in front of |1〉) seem to be much more systematic.
That is, on the kth qubit, we want the relative phase to be proportional to 0(.

b
)jk . . . jn.

59 6.1 The quantum Fourier transform

We will now try to develop an intuition about the circuit that will help us achieve this
swapped-QFT operation. In fact, to keep things simpler, we will just try to make a circuit
that has n qubits and when given the input |j〉 = |j1j2 . . . jn〉, prepares a state on the
first qubit |ψq1〉 which is identical to the state we need on the first qubit in Equation 6.16.
That is,

|ψq1〉 =
|0〉+ exp

[
i2π(0(.

b
)j1j2 . . . jn)

]
|1〉

√
2

. (6.18)

At first glance, the process of preparing this state does not seem obvious, so let’s start
with small steps. Since we want to introduce relative phases, we will begin by looking at
the simplest way of introducing relative phases–rotation unitaries. Consider the action
of the rotation unitary Uθ on the states |0〉 , |1〉 and |+〉.

Uθ =

[
1 0
0 eiθ

]
.

Uθ |0〉 = |0〉
Uθ |1〉 = eiθ |1〉

Uθ |+〉 =
Uθ |0〉+ Uθ |1〉√

2
=
|0〉+ eiθ |1〉√

2
.

(6.19)

Hence, we have successfully introduced a relative phase eiθ in the state |+〉. However,
in our required state |ψq1〉, we have a phase that depends on the states of other quits
|j2〉 , |j3〉 , . . . |jn〉. The most straightforward way to introduce dependence on the state of
another qubit is to use a controlled gate. So let’s try to see how the controlled version
of this unitary C-Uθ = |0 〉〈 0| ⊗ 1 + |0 〉〈 0| ⊗ Uθ acts on the state |c+〉, where |c〉 is the
state of the control qubit.

C-Uθ |0+〉 = |0〉 ⊗
|0〉+ |1〉√

2

C-Uθ |1+〉 = |1〉 ⊗
|0〉+ eiθ |1〉√

2

(6.20)

Concisely, we can write this as

C-Uθ |c+〉 = |c〉 ⊗
|0〉+ eiθc |1〉√

2
. (6.21)

Now, for designing the circuit, we define the unitary

Rk =

[
1 0

0 ei2π/2
k

]
, (6.22)

and now consider the following controlled circuit.

q1 |j1〉

...

qk |jk〉

H Rk

|ψ1〉 |ψ2〉

(6.23)

Chapter 6: Quantum Fourier Space 60

Exercise: Show that the action of Hadamard on a single qubit basis state gives

H |x〉 =
|0〉+ exp[

(
i2π
2
x
)
]

√
2

∀ x = 0, 1. (6.24)

Hint: The simplest way would be to write the action of the Hadamard gate on the two
basis states and show it matches the required form above.

The states are

|ψ1〉 = (H |j1〉)⊗ |jk〉 =

(
|0〉+ exp

[
i2π
(
j1
2

)]
|1〉

√
2

)
⊗ |jk〉

|ψ2〉 =
|0〉+ exp

[
i2π
(
j1
2

)]
exp

[
i2π
(
jk
2k

)]
|1〉

√
2

⊗ |jk〉

(6.25)

where the jk in the exponent indicates that the unitary acts only when the control qubit
is in state |1〉, that is, jk = 1. Using the binarized decimal notation, we know, j1

2
= 0(.

b
)j1

and jk
2k

= 0(.
b
) 0 . . . 0︸ ︷︷ ︸
k−1 zeros

jk. Hence, we get,

|ψ2〉 =

|0〉+ exp

i2π
0(.

b
)j1 + 0(.

b
)

k−1 zeros︷ ︸︸ ︷
0 . . . 0 jk

 |1〉
√
2

⊗ |jk〉 .

=

|0〉+ exp

i2π
0(.

b
)j1

k−2 zeros︷ ︸︸ ︷
0 . . . 0 jk

 |1〉
√
2

⊗ |jk〉

(6.26)

Now, instead of directly applying a controlled unitary from qk, if we serially apply (one
after another) such controlled unitaries controlled by all qubits (q2 to qn) on the first
qubit, as shown in Figure 6.1, we get,

|Ψ1〉 =
|0〉+ exp

[
i2π
(
0(.
b
)j1j2 . . . jn

)]
|1〉

√
2︸ ︷︷ ︸

State of the 1st qubit |ψq1〉

⊗ |j2 . . . jn〉 . (6.27)

We note that the state of the other qubits has not been altered at all. Now, we apply a
similar sequence of gates on qubit q2, starting with the Hadamard. However, now instead
of qk controlling Rk (as in the case of q1), here, in the case of q2, the qubit qk will control
the gate Rk−1. That is, an R2 controlled by q3, an R3 controlled by q4 and so on until an
Rn−1 controlled by qn, as shown in Figure 6.2.

2We only denote the first wire dotted since there are hidden operations happening on the first qubit.
However, we do not need to do so for the other qubits, as there are no operations happening on them.

61 6.1 The quantum Fourier transform

. . .

...

q1 |j1〉 H R2 R3 Rn

q2 |j2〉
q3 |j3〉

qn |jn〉

|Ψ1〉

Figure 6.1: Serially applying controlled unitaries to the first qubit.2

. . .

. . .

...

q1 |j1〉 H R2 R3 Rn

q2 |j2〉 H R2 Rn−1

q3 |j3〉

qn |jn〉

|Ψ1〉 |Ψ2〉

Figure 6.2: Serially applying controlled unitaries to the second qubit.

After these two sets of serial unitary applications, the total state of the system becomes

|Ψ2〉 =
|0〉+ exp

[
i2π
(
0(.
b
)j1j2 . . . jn

)]
|1〉

√
2︸ ︷︷ ︸

|ψq1〉

⊗
|0〉+ exp

[
i2π
(
0(.
b
)j2 . . . jn

)]
|1〉

√
2︸ ︷︷ ︸

|ψq2〉

⊗ |j3 . . . jn〉 .

(6.28)

Continuing this process, the operations on the kth qubit will be

qk |jk〉 . . . |ψqk〉H Cqk+1
-R2 Cqn-Rn−k+1

(6.29)

where, Cqx-Ry means applying the gate Ry controlled by the qubit qx. In fact, the
Hadamard gate on qk can be thought of as Cqk-R1, and we get the sequence of gates

qk |jk〉 |ψqk〉Cqk-R1 Cqx-Rx−k+1 Cqn-Rn−k+1
(6.30)

with k ≤ x ≤ n. The state of the kth qubit will be

|ψqk〉 =
|0〉+ exp

[
i2π
(
0(.
b
)jkjk+1 . . . jn

)]
|1〉

√
2

(6.31)

and the total state will be

|Ψk〉 =
k⊗

k′=1

∣∣ψqk′〉 . (6.32)

Chapter 6: Quantum Fourier Space 62

q1 |j1〉 . . .

q1 |j2〉 . . .

... ...

qn−1 |jn−1〉 . . .

qn |jn〉 . . .

H R1 Rn

H R1

H

|j〉 QFT|j〉|Ψn〉

(6.34)

Figure 6.3: The complete QFT circuit.

Continuing this, when we reach the nth qubit, we apply only a single Hadamard gate since
there are no further qubits that will control the Rx operations. Finally, after applying
these cascaded stages on all n qubits, the state will be

|Ψn〉 =
n⊗
k=1

|ψqk〉 =
n⊗
k=1

 |0〉+ exp
[
i2π
(
0(.
b
)jkjk+1 . . . jn

)]
|1〉

√
2

 . (6.33)

Which is the result of the QFT applied on |j〉, but with a reversed qubit ordering. We
can simply verify this claim by replacing k with n−k in Equation 6.33. This replacement
of index essentially means swapping all the qubits, that is, exchanging the first qubit with
the last, the second qubit with the second-to-last, and so on. We denote this operation by
SWAPn and SWAPn |q1q2 . . . qn−1qn〉 = |qnqn−1 . . . q2q1〉. It swaps the states of the qubit
k with that of qubit n− k + 1. Applying this to |Ψn〉, we get,

SWAPn |Ψn〉 = SWAPn

(
n⊗
k=1

|ψqk〉

)

=
n⊗
k=1

∣∣ψqn−k+1

〉

=
n⊗
k=1

 |0〉+ exp
[
i2π
(
0(.
b
)jn−k+1 . . . jn

)]
|1〉

√
2

 = QFT |j〉 .

(6.35)

Therfore, we get QFT |j〉 = SWAPn |Ψn〉. The complete QFT circuit is shown in Fig-
ure 6.3.

Having established that the proposed circuit indeed performs the QFT correctly, we try
to understand the key idea behind the QFT circuit a bit better by emphasizing on the
subtleties.

63 6.2 Quantum phase estimation

• First, we purposely designed a circuit that gives us the QFT but with a reversed
qubit ordering. The reason for this choice is just to simplify the ordering of the
controlled unitaries.

• Second, we leveraged the separable nature of the output, to one-by-one construct
the required state on each qubit. However, it is important to preserve the state of
the kth qubit |jk〉 until we have constructed the required states on all the qubits
above it since jk appears in the exponents in all the preceding states from |ψq1〉 to∣∣ψqk−1

〉
.

• And finally, we swapped the qubits to get the QFT in the correct qubit ordering.

Exercise: Try to define the inverse QFT (IQFT) and design a circuit for the same.

Hint: Use the fact that IQFT · QFT |j〉 = |j〉 to first define the IQFT. In fact, since the
QFT is unitary, the IQFT = QFT†. Then, for the circuit, try to undo the operations we
performed systematically one by one. The identity (AB)† = B†A†, might help.

Now, we shall look at an application of the QFT.

6.2 Quantum phase estimation
The quantum phase estimation algorithm is (un)arguably the most quantum algorithm
among the fault-tolerant ones, making it the most important application of the QFT. It
is in fact, a central component in Shor’s factoring algorithm and many other algorithms.
QPE relies on the phase-kickback mechanism and the QFT, both of which, we have
studied already.

Before presenting the full algorithm, we shall look at a simplified case

Problem statement: We are given an n-qubit unitary U and one of its eigenvectors
|µ〉. Since unitary operators have unit norm eigenvalues, we can represent the eigenvalue
associated with |µ〉 as ei2πφ for some 0 ≤ φ ≤ 1. The task is to find φ.

We may think that finding φ is a trivial task, we just need to apply U on |µ〉 and check
the phase that appears. However, it is important to note that the phase is a global phase
and hence cannot be physically measured. In principle, we cannot distinguish between
|µ〉 and ei2πφ |µ〉. So how do we go about this task?

We begin by making an observation. Since 0 ≤ φ ≤ 1, the binary representation of φ
can be written as φ = 0(.

b
)φ1φ2 . . . φt (assuming we can represent φ exactly using t bits).

Hence, to represent φ we will require t-qubits. This will be our first register T . register
is a collection of qubits that are addressed by one name–analogous to a classical register
which is a set of a finite number of classical bits. Then, we will also require a second
register to load the state |µ〉 and perform operations on it to recover the phase. Now, it
is natural to guess that the operations we need to perform will be somehow related to
the unitary U , since it induces the phase we want to recover on |µ〉.

Just like the QFT encodes the binary bit-string representation of an integer into relative
phases, the IQFT can recover the integer from such relative phases. For our problem,

Chapter 6: Quantum Fourier Space 64

the complete integer with all the t-bits would be φ1φ2 . . . φt = 2tφ = φ3. And the QFT
of this binary bitstring is

QFT |φ〉 =
t⊗

k=1

 |0〉+ exp
[
i2π
(
0(.
b
)φt−k+1 . . . φt

)]
√
2


QFT |φ〉 =

 |0〉+ exp
[
i2π
(
0(.
b
)φt

)]
√
2

⊗
 |0〉+ exp

[
i2π
(
0(.
b
)φt−1φt

)]
√
2

⊗ · · ·
· · · ⊗

 |0〉+ exp
[
i2π
(
0(.
b
)φ1 . . . φt

)]
√
2

 .

(6.36)

If we prepare the above state, then we can simply perform the inverse-QFT (QFT†) and
obtain Φ = 2tφ. Now, in the above equation, we observe that the relative phases are
simply φ multiplied with different powers of 2. To illustrate, 2φ = 2[0(.

b
)φ1φ2 . . . φt] =

φ1(.
b
)φ2 . . . φt, and similarly 2kφ = φ1 . . . φk(.

b
)φk+1 . . . φt. Since we want our first relative

phase (on our first qubit) to be 0(.
b
)φt, we shall only consider powers of 2 up to t− 14.

Further, introducing a relative phase is exactly what we did while building the QFT circuit
and in previous lectures (like with Deutsch-Jozsa) using the phase kickback technique.
Like before, we begin by taking small steps and try to introduce the relative phase we
want (0(.

b
)φ1 . . . φt = φ) on the tth bit of the register T .

· · ·

... ...

· · ·

· · ·

/n · · ·

|0〉 H

QFT †

|0〉 H

|0〉 H

|µ〉 U20 U21 U22n−1

The trick of applying H⊗t to |0〉 is very common, because it gives the total superposition
state:

|00 · · · 0〉+ |00 · · · 1〉+ |00 · · · 10〉+ |00 · · · 11〉+ · · ·+ |11 · · · 1〉 (6.37)
and everything that follows is then applied to all states of the computational basis in
parallel. Since H⊗t is separable, we can inspect the state of each of the t qubits.

3We can think of this operation as simply the binary equivalent of converting a decimal t-digit floating
point number (between 0 and 1) to an integer by multiplying it by 10t.

4Another reason is the fact that 2tφ is an integer and hence induces a trivial phase ei2π(2tφ) = 1.

65 6.2 Quantum phase estimation

1st qubit:

|0〉 H−→ |0〉+ |1〉√
2

C−U2t−1

−−−−−→ |0〉+ e2πi(2
t−1φ) |1〉√
2

(6.38)

This happens because, if we focus on the qubit 1 of the 1st register and on the 2nd register,

|0〉|u〉 H−→ |0〉+ |1〉√
2
|u〉 = 1√

2
(|0〉|u〉+ |1〉|u〉) (6.39)

C-U2t−1

−−−−−→ 1√
2

(
|0〉|u〉+ |1〉U2t−1 |u〉

)
(6.40)

=
1√
2

(
|0〉|u〉+ |1〉e2πiφ2t−1 |u〉

)
(6.41)

=
1√
2

(
|0〉+ e2πi(2

t−1φ)|1〉
)
|u〉 (6.42)

The fact that the phase coming from the controlled operation appears back into the
control qubit, because we used the Hadamard gate first, to obtain a full superposition, is
called phase kickback, and is very commonly used in quantum algorithms.

We can now apply the same reasoning to all qubits of the 1st register. The result of the
dashed line before the inverse QFT is:

|0〉+ e2πi(2
t−1φ)|1〉, |0〉+ e2πi(2

t−2φ)|1〉, · · · , |0〉+ e2πi(2
0φ)|1〉 (6.43)

Notice that, if φ = 0.φ1φ2 · · ·φt, then

2t−1φ = 2t−1
(φ1

2
+
φ2

4
+ · · ·+ φt

2t

)
=
(
2t−1φ1 + 2t−2φ2 + · · ·+

φt
2

)
(6.44)

all terms in the sum are integers, except the last one. Then, all the integers disappear
because they enter as e2πik = 1. Then we are left with e2πiφt/2.

In the same way, the second qubit goes into:(
|0〉+ e

2πi0(.
b
)φ1φ2···φt |1〉

)
√
2

. (6.45)

and so on. The state before the inverse QFT is

1√
2t

(
|0〉+ e

2πi0(.
b
)φt |1〉

)
⊗
(
|0〉+ e

2πi0(.
b
)φt−1φt |1〉

)
⊗· · ·⊗

(
|0〉+ e

2πi0(.
b
)φ1···φt |1〉

)
. (6.46)

This matches the state we needed. And now we see that application of the inverse QFT
to register 1 gives as a final state:

|φ〉|u〉 → |φ〉|u〉 = |φ1φ2 · · ·φt〉|u〉 (6.47)

where φi = 0, 1.

The state in register 1 is a state of the computational basis. In quantum computing,
we always know how to measure the qubits in the computational basis, that is, with an

Chapter 6: Quantum Fourier Space 66

operator diagonal in the same basis which can read out with 100% probability if the qubit
is 0 or 1.

Then by simply measuring all the qubits in the 1st register, we obtain φ1, φ2, · · · , φt,
namely the value of φ.

Questions:

1. What is the number of gates as a function of n?

2. How much must be t?

3. What happens if 2tφ is not an integer number?

Questions 2 and 3 are linked to each other. We will see that if 2tφ is not an integer, then
we will obtain φ̃ = b2tφc (the integer part of 2tφ). With high probability, the higher t,
the longer t.

It is then enough to choose t large enough and run the algorithm several times, to see
which result for φ one gets most frequently. One can show that if we want φ accurate to
m-bits, with success probability at least 1− ϵ, we must choose:

t = m+

⌈
log

(
2 +

1

2ϵ

)⌉
. (6.48)

Chapter 7

Shor’s Factoring Algorithm

7.1 Shor’s Factoring Algorithm
Shor’s factoring algorithm finds one factor of an integer N in a time:

O((logN)3) with probabilityO(1). (7.1)

The best known classical algorithm, the general number field sieve, is sub-exponential:

O
(
e1.9(logN)1/3(log logN)2/3

)
, (7.2)

so the advantage is “almost” exponential.

The algorithm relies on some number-theoretic results and on the order-finding problem,
which can be solved efficiently on a quantum computer thanks to QPE.

Here, we will take the shortest path and give all the number-theoretical results without
proof.

First, let’s define the order-finding problem. Let N be an integer. Consider the set:

Z∗
N = {a ∈ ZN : gcd(a,N) = 1} (7.3)

where ZN = {0, 1, . . . , N − 1}.

Then, considering the multiplication modulo N , Z∗
N forms a group:

• If a, b ∈ Z∗
N , then ab (modN) ∈ Z∗

N .

• If a ∈ Z∗
N , then ∃b ∈ Z∗

N such that ab (modN) = 1, and we call b = a−1.

• Of course, a · 1 (modN) = 1 · a (modN) = a.

Remember that the order of a group G is the number of its elements.

Definition: The order of an element a ∈ G is the smallest positive integer r such that:

ar = e. (7.4)

Lagrange’s Theorem: For finite groups G, the order r of an element of G is a divisor
of the order of G (denoted as ord(G)).

67

Chapter 7: Shor’s Factoring Algorithm 68

Order-finding problem:
Given an integer N , and an integer a ∈ Z∗

N , find the order of a, i.e., find the smallest
positive integer r such that:

ar = 1 (modN). (7.5)

7.2 Order Finding
Z∗
N = {a ∈ ZN : gcd(a,N) = 1}. (7.6)

ZN = {0, 1, . . . , N − 1}. (7.7)

The number of elements in Z∗
N determines a function called the Euler φ-function:

φ(N) = number of elements inZ∗
N . (7.8)

Order finding consists in finding the smallest integer r 6= 0 such that:

armodN = 1. (7.9)

This exists and is finite because of Euler’s Theorem:

aφ(N) modN = 1. (7.10)

Also, Lagrange’s Theorem states that r for a group G is a divisor of the order of G.

Example:
a = 4, N = 35:

41 = 4, 42 = 16, 43 = 29, 44 = 11, 45 = 9, 46 = 1. (7.11)
So r = 6.

Link between order finding and period finding in the case of Z∗
N . Consider the function

f(x) = axmodN where a ∈ Z∗
N . (7.12)

The period of f(x) is the smallest integer r 6= 0 such that armodN = 1, because
a0 modN = 1. In fact, if a is prime to N , i.e., gcd(a,N) = 1, then if a2 < N , a2 is also in
Z∗
N , i.e., gcd(a2, N) = 1 (a2 has the same distinct prime factors as a, and per hypothesis

they do not divide N).

If a2 > N , then we subtract N from a2, and apply the same considerations to the
remainder. (If a2 = N , then a2 modN = 0, and this is a trivial case for factoring).

If, however, armodN = 1, then ar+1 modN = amodN , etc.

So f(x) is periodic, and finding the period r coincides to the order finding problem for
the group G = Z∗

N .

The quantum order finding is just the QPE applied to the unitary operation:

U |y〉 = |xy (mod N)〉 (7.13)

with y ∈ {0, 1}L and L = dlog2Ne is the number of bits required to express N (and
assume that U |y〉 = |y〉 if N ≤ y ≤ 2L − 1).

69 7.2 Order Finding

In fact, we see that for 0 ≤ s ≤ r − 1,

|us〉 =
1√
r

r−1∑
k=0

exp

[
−2πisk

r

]
|xkmodN〉 (7.14)

are eigenstates of U :

U |us〉 =
1√
r

r−1∑
k=0

exp

[
−2πisk

r

]
|xk+1 modN〉 (7.15)

= exp

[
2πis

r

]
|us〉, (7.16)

where r is the order of x modulo N .

Two problems:
First, implement the initial state |us〉 (we don’t know r). Second, write an efficient
quantum code for the oracle C-U .

U |1〉 = |xmodN〉 (7.17)
U |x〉 = |x2 modN〉 (7.18)

... (7.19)
U |xr−1〉 = |xrmodN〉 = |1〉. (7.20)

Then:

U
|1〉+ |xmodN〉+ · · ·+ |xr−1 modN〉√

r
=
|xmodN〉+ |x2 modN〉+ · · ·+ |1〉√

r
(7.21)

is an eigenstate of U .

Same for:

|us〉 =
1√
r

r−1∑
k=0

e−2πisk/r|xkmodN〉. (7.22)

The second problem can be solved efficiently with a circuit with O(L3) gates. The method
is called modular exponentiation. We won’t describe it in detail (*see Nielsen-Chuang*).

For the state preparation problem, notice that:

1√
r

r−1∑
s=0

|us〉 = |1〉. (7.23)

If we input |1〉, by linearity we will find one of the phases s/r with probability at least
1− ϵ

r
if we choose:

t = 2L+ 1 +

⌈
log

(
2 +

1

2ϵ

)⌉
. (7.24)

Remember that QPE gives a t-bit estimate of s. How can we guess s/r from this estimate?

Chapter 7: Shor’s Factoring Algorithm 70

We can because s and r are integers. There are several methods to compute the closest
fraction s/r to a real number φ.

The method of continued fractions is the best one. The method will give r if s/r is a
reduced fraction (i.e., s and r are co-primes). If not, then there are several ways out,
mostly consisting in repetitions of the algorithm to find different values of s/r.

All these tricks require O(poly(L)) operations (O(L3)).

Shor’s algorithm is a big achievement. It endangers the strong Church-Turing thesis.
However, it requires fault-tolerant QC.

The largest integer factored using Shor’s algorithm is 21. However, using variational
algorithms, numbers as large as 291311 were factored (and adiabatic QC), using NMR
QC at larger-than-room T .

7.3 Modular exponentiation

To compute C-U2j , we may trivially compute C-U 2j times. However, then the runtime
would be exponential in L, i.e., linear in N . To solve this problem, there is the modular
exponentiation algorithm.

• First, notice that there is an efficient classical algorithm for computing a2j modN .
It is enough to repeat j times:

a← a2 modN. (7.25)

Since j ∼ L, then this is efficient.

• Second, notice that if it is efficient classically, then it must be efficient on a quantum
computer.

• Third, rewrite the sequence of C-U2j as:

|z〉|y〉 −→ |z〉U z120 U z221 · · · U zL2
L−1 |y〉 (7.26)

where zj are the bits of z, and realize the control on the U2j . This gives:

−→ |z〉|xzL2L · · · xz121ymodN〉 = |z〉|xzymodN〉. (7.27)

So if we know how to compute x2j modN , then we know how to compute:

xzL2
L modN =

(
xzL−12

L−1 modN
)(

xzL−22
L−2 modN

)
· · · (xz020 modN). (7.28)

Then the circuit of the order finding is:

/t

/L

t qubits|0〉 H⊗t QFT†

L qubits|1〉 xzmodN

(7.29)

71 7.4 Link Between Order Finding and Factoring

7.4 Link Between Order Finding and Factoring
The link is made thanks to the following two theorems.

Theorem: N is an L-bit integer, it is composite (i.e., not a prime). Suppose x is a
non-trivial solution of the equation:

x2 = 1 (modN), 1 < x < N. (7.30)
Non-trivial means that the solution is not x = 1 (modN) nor x = N − 1 = −1 (modN).

Then at least one of gcd(x− 1, N) and gcd(x+ 1, N) is a non-trivial factor of N .

Theorem: Suppose N = pα1
1 · · · pαm

m (the prime factorization of N), and N is odd. Let
x be an integer chosen randomly (uniformly) between 1 < x ≤ N − 1, and suppose x is
co-prime to N (i.e., x ∈ Z∗

N). Let r be the order of xmodN . Then:

prob
[
r is even and xr/2 6= −1 (modN)

]
≥ 1− 1

2m
. (7.31)

The circuit for Shor’s algorithm is give below.

· · ·

... ...

· · ·

· · ·

/n · · ·

|0〉 H

QFT †

|0〉 H

|0〉 H

|1〉 Ua20 Ua21 Ua22n−1

7.5 The Algorithm is Then Simple
1. If N is even, return the factor 2.

2. Determine if N = ab for integers a ≥ 3 and b ≥ 2. If so, return a.

For this step: ifN = ab then log3N = b log3 a =⇒ b =
log3N

log3 a
. (7.32)

The test hasO(log3N) complexity because one has to computeN1/b = N1/2, N1/3, . . . log3N .

3. Randomly choose 1 < x < N − 1. If gcd(x,N) > 1 (i.e., x /∈ Z∗
N), then we have

found a factor, which is gcd(x,N).

4. Use the order-finding subroutine to find the order r of xmodN .

5. If r is even and xr/2 6= −1 (modN), then compute gcd(xr/2 − 1, N) and gcd(xr/2 +
1, N). If one of the two is a non-trivial factor of N , success. If no, fail. The success
probability is ≥ 3

4
as m ≥ 2. Also, if fail, one can go back to step 3 with a new

randomly generated x and repeat.

Chapter 7: Shor’s Factoring Algorithm 72

7.6 Why the Algorithm Works
The algorithm works because if xr = 1 (modN) and r is even, then define:

y = xr/2. (7.33)

If y 6= −1 (modN), then:

y2 = mN + 1, (m an integer), (7.34)

(y + 1)(y − 1) = mN. (7.35)
Thus:

(y + 1)(y − 1)

N
is an integer. (7.36)

Then either y + 1 or y − 1 must have a common factor with N .

Chapter 8

Grover’s Algorithm

8.1 Grover’s Quantum Search Algorithm
The goal of Grover’s algorithm is to carry out a search in an unstructured database
efficiently. Take as an example Sudoku or the Traveling Salesman Problem. There are
N = 2n possible configurations, and (only) one is the solution. The classical algo. consists
in generating them randomly and testing if they are solutions. Both are NP-complete
problems, and the best classical algorithm should then take O(N) attempts. Grover’s
algorithm takes O(

√
N) queries to a quantum oracle that verifies a candidate solution.

This is possible because of quantum superposition. Put the initial state in:

|Ψ〉 = H⊗n|0〉 = 1√
N

2n−1∑
j=0

|j〉. (8.1)

We will see that it takes O(
√
N) calls to the oracle to ”rotate” this state close to the

solution.

The oracle Ô is an operator defined as:

Ô|x〉|q〉 = |x〉|q ⊕ f(x)〉, (8.2)

where x is an n-qubit register, and q is a single oracle qubit such that q = 0/1 if f(x) =
0/1.

We see that the function f(x) is a verifier, which tells us for each input x if it is a solution
to the problem by outputting f(x) = 1, and f(x) = 0 otherwise.

How to write the code for the oracle depends on the specific search problem. Note,
however, that the oracle only needs to be able to recognize the solution if given one, not to
actually find it. Example: factoring. We may factor m by searching all primes p ≤

√
m.

The oracle must only carry out a division, which can be achieved with the techniques of
reversible computing.

For Grover’s algo., we use the phase kickback trick. We set:

|q〉 = HX|0〉 = |0〉 − |1〉√
2

(8.3)

73

Chapter 8: Grover’s Algorithm 74

Figure 8.1: The circuit for Grover’s search algorithm.

initially. Then application of the oracle gives:

Ô|x〉
(
|0〉 − |1〉√

2

)
= (−1)f(x)|x〉

(
|0〉 − |1〉√

2

)
. (8.4)

We see that the oracle state doesn’t change. We have, however, acquired a global phase
(−1)f(x), which will become significant when O is applied to a superposition of |x〉. Since
the oracle state stays the same, we omit it from the discussion. Then:

Ô|x〉 = (−1)f(x)|x〉. (8.5)

We suppose that for N items in the database, there are M solutions, 1 ≤M ≤ N . Then
one solution can be found in:

O

(√
N

M

)
applications of Ô. (8.6)

8.1.1 The Algorithm
The circuit is shown in Figure 8.1. The phase operator sends |0〉 into |0〉 and the com-
plement subspace |x〉 → −|x〉. It is then expressed as 2|0〉〈0| − I. Thus:

G = H⊗n (2|0〉〈0| − I)H⊗nÔ. (8.7)

G = (2|ψ〉〈ψ| − I) Ô, (8.8)

where:

|ψ〉 = H⊗n|0〉 = 1√
N

N−1∑
x=0

|x〉, (8.9)

is the constant superposition state.

75 8.1 Grover’s Quantum Search Algorithm

Figure 8.2: An illustration of one step of the Grover’s search procedure.

8.1.2 Geometrical Interpretation of Grover’s Algorithm
Grover’s algorithm admits a nice geometrical interpretation. Define the vector |β〉 as:

|β〉 = 1√
M

′∑
x

|x〉, (8.10)

where
∑′

x is the sum over all x that are solutions, i.e., f(x) = 1. Define the orthogonal
vector:

|α〉 = 1√
N −M

′′∑
x

|x〉, (8.11)

where
∑′′

x sums over all x such that f(x) = 0.

Then:

|ψ〉 =
√
N −M
N

|α〉+
√
M

N
|β〉. (8.12)

So |ψ〉 is in the plane defined by |α〉 and |β〉. The action of the oracle O on a vector of
this plane is:

Ô(a|α〉+ b|β〉) = a|α〉 − b|β〉, (8.13)

which is a reflection about the vector |α〉.

The operator 2|ψ〉〈ψ| − I also performs a reflection in the same plane, about the vector
|ψ〉. The result of two reflections is a rotation. This is best seen graphically as shown in
??.

We see that:
|ψ〉 = cos

(
θ

2

)
|α〉+ sin

(
θ

2

)
|β〉, (8.14)

where:

cos

(
θ

2

)
=

√
N −M
N

. (8.15)

Chapter 8: Grover’s Algorithm 76

Then:
G|ψ〉 = cos

(
3θ

2

)
|α〉+ sin

(
3θ

2

)
|β〉, (8.16)

and:
Gk|ψ〉 = cos

(
(2k + 1)θ

2

)
|α〉+ sin

(
(2k + 1)θ

2

)
|β〉. (8.17)

We see that by rotating by θ several times, we eventually get very close to |β〉. Then, a
measurement on the computational basis will give |β〉 with high probability.

The angle θ is defined by the problem. Ideally, we need an overall rotation by an angle
ϕ = arccos

√
M
N
. Then we need to apply the operator G, R times where,

R = round

arccos
√

M
N

θ

 . (8.18)

8.1.3 Number of Applications and Probability Analysis
This brings us to an angle smaller than θ

2
from |β〉. But:

θ

2
≤ π

4
, (8.19)

which implies that the measurement on the computational basis will give a solution with
probability > 1

2
. This eventually solves the problem of finding one solution.

To better estimate the probability, we can suppose M � N . Then:

θ = sin θ ≈ 2

√
M

N
, (8.20)

and:
θ

2
=

√
M

N
� 1, Perror <

M

N
. (8.21)

To estimate the number of applications R of G, note that:

R ≤ π

2θ
, since arccos(x) ≤ π

2
. (8.22)

So since:
θ

2
≈ sin

(
θ

2

)
=

√
M

N
, (8.23)

R ≤ π

4

√
N

M
= O

(√
N

M

)
. (8.24)

What if M is large? If M ≈ N
2
, instead of running Grover, pick a value of x at random,

and the probability of finding a solution is ≈ 1
2
.

77 8.1 Grover’s Quantum Search Algorithm

If we don’t know whether M ≥ N
2
, we can add one qubit to the database, so doubling its

size, and rewrite Ô so that all extra entries have f(x) = 0. Now we have 2N elements
and necessarily M < 2N

2
.

What if we don’t know M? How do we determine Ô?

There is an algorithm for counting the number of solutions M to a search problem. It is
the quantum counting algorithm. It is based simply on quantum phase estimation, and
it also runs in O(

√
N).

The true difficulty of Grover’s algorithm is to write an efficient oracle for the problem
under analysis.

Chapter 9

Digital Quantum Simulation

The original task for quantum computing as proposed by Feynman, has always been to
simulate the dynamics of a quantum-mechanical system.

9.1 Time-Evolution Operator with Discretized Time
Steps

The task of digital quantum simulation is to simulate the dynamics of an n-spin-1
2
system

governed by the Hamiltonian Ĥ using a quantum computer.

Ĥ =
L∑
j=1

ĥj =
L∑
j=1

ĥjPj, (9.1)

where each ĥj = cjPj and Pj are weight-k Pauli operators on n qubits. The weight is
simply the number of qubits on which the Pauli word acts non trivially, or the number of
non-identity Pauli matrices in the word. We aim to simulate the time-evolution operator
U(t) = e−iĤt.

Now, we rewrite the time-evolution operator over a time t in terms of N smaller steps of
size ∆t = t

N
. This gives:

U(t) = e−iĤt =
(
e−iĤ∆t

)N
. (9.2)

This formula is exact, as we are simply dividing the evolution into N sequential appli-
cations of the same operator over shorter time intervals ∆t, without any approximation
yet. For each smaller time step ∆t, we can now attempt to find e−iĤ∆t. It might seem
easy at first sight but, as we will see briefly, this is not an easy task, especially when we
have the Hamiltonian Ĥ made up of several non-commuting terms.

9.2 Zassenhaus Formula

Since Ĥ is expressed as a sum of terms Ĥ =
∑L

j=1 ĥj, and in general the terms ĥj do not
commute, directly computing e−iĤ∆t is challenging. To proceed, we apply the Zassenhaus

78

79 9.3 Suzuki-Trotter Decomposition

formula, which allows us to approximate the exponential of a sum of operators as a
product of exponentials:

eA+B = eAeBe−
1
2
[A,B]e

1
6
([A,[A,B]]+[B,[B,A]]) · · · (9.3)

for two operators A and B. In the case of our Hamiltonian, with multiple terms ĥj, the
formula extends to:

e
∑L

j=1 ĥj ≈
L∏
j=1

eĥj × correction terms. (9.4)

Each correction term involves nested commutators of the operators ĥj, and these terms
contribute to the error of the approximation. For the purpose of digital quantum simu-
lation, we typically use the lowest-order approximation, which keeps only the first term
in the expansion and neglects the higher-order commutator terms.

9.3 Suzuki-Trotter Decomposition

Applying the first-order approximation of the Zassenhaus formula to e−iĤ∆t with H =∑L
j=1 ĥj, we obtain,

e−iĤ∆t ≈
L∏
j=1

e−iĥj∆t +O(∆t2). (9.5)

This approximation introduces an error in each time step of size O(∆t2), due to the
neglected commutator terms.

When we apply this approximation over N steps to reach a total time t = N∆t, the
cumulative error over all steps scales as:

O(N∆t2) = O(t∆t). (9.6)

Thus, for a total evolution time t, the overall error in the first-order Suzuki-Trotter
decomposition is O(t∆t). This error decreases linearly with∆t, so improving the accuracy
requires increasing N (i.e., reducing ∆t), leading to a finer decomposition.

Combining the above steps, we approximate the time-evolution operator U(t) = e−iĤt as

U(t) ≈

(
L∏
j=1

e−iĥj∆t

)N

=
(
e−iĥ1∆te−iĥ2∆t · · · e−iĥL∆t

)N
. (9.7)

To improve the accuracy, we can use a second-order Suzuki-Trotter expansion, which
reduces the error scaling from O(t∆t) to O(t∆t2), hence introducing a quadratic error
decay with increasing N . This decomposition introduces a symmetric ordering that can-
cels out some of the lower-order error terms. Specifically, the second-order decomposition
for a single time step is given by:

e−iĤ∆t ≈
L∏
j=1

e−iĥj∆t/2
1∏

j=L

e−iĥj∆t/2. (9.8)

Chapter 9: Digital Quantum Simulation 80

This means we apply each e−iĥj∆t/2 operator twice per time step, once in the forward
ordering and once in reverse ordering, creating a palindromic sequence of operations.
This symmetry helps to reduce the accumulation of errors associated with the non-
commutativity of the terms ĥj.

To simulate the evolution over a total time t = N∆t, we repeat the second-order decom-
position N times:

U(t) ≈

(
L∏
j=1

e−iĥj∆t/2
1∏

j=L

e−iĥj∆t/2

)N

. (9.9)

For each time step ∆t, the error in the second-order expansion scales as O(∆t3). When
applied over N steps to reach the total evolution time t = N∆t, the cumulative error
becomes

O(N∆t3) = O(t∆t2). (9.10)

9.4 Quantum Circuit Implementation
Now, we will consider the Transverse Field Ising model (TFIM) and demonstrate how to
implement these Trotter steps on a quantum computer. The Hamiltonian TFIM is given
by

Ĥ = J
∑
⟨i,j⟩

ẐiẐj − Γ
∑
i

X̂i, (9.11)

where J represents the interaction strength between neighboring spins, and Γ is the
transverse field strength. Since the Z operators commute among themselves but not with
the X operators, we decompose the Hamiltonian into two non-commuting terms.

ĤZ = J
∑
⟨i,j⟩

ẐiẐj, ĤX = −Γ
∑
i

X̂i. (9.12)

Now, the time evolution under the transverse field term ei∆tΓX can be implemented as
a rotation around the x axis using an RX(θ) gate with an angle θ = 2∆tΓ1. Further,
if the hardware does not support RX gates natively, we could also implement RX(θ) =
HRZ(θ)H.

RX(2∆tΓ)

Further, the evolution under the coupling term requires a 2-qubit gate. To implement
e−i∆tJZiZj , we need to rotate by am angle −∆tJ if the two spins are same and by +∆tJ
if the two spins are different. This can be realized as follows.

i

j RZ(2∆tJ)

Similar circuits can be defined for different Hamiltonians and hardware capabilities.
1The input angle to the RX gate is double the required angle of rotation owing to the defintion of

the RX gate.

Chapter 10

The Density Operator Formalism

10.1 The density operator formalism
In quantum mechanics, we often have to describe open quantum systems, i.e. systems that
interact with an environment. We want to describe the system, under the influence of the
environment, without having to describe the details of the environment. This is similar
to what we do in thermodynamics or statistical physics, where instead of describing each
single trajectory of the many molecules of a gas, we give up most of this information and
keep only relevant information in terms of effective equations and average quantities like
pressure, volume, temperature, etc. In quantum mechanics, giving up information about
the environment is a more subtle task, as system and environment generally exist in an
entangled state, as a consequence of interactions. The density operator, or density matrix
formalism enables such an effective description of an open quantum system.

Consider the simplest possible representation of system and environment as two quantum
bits, describing respectively the system and the environment. Assume they are in the
entangled state

|ψ〉 = |0S0E〉+ |1S1E〉√
2

(10.1)

We know that for this state it does not make sense to ask the question: what is the state
of the system S? However, if we measure an observable ÔS of the system, this amounts
to measuring Ô = ÔS ⊗ ÎE on the whole state |ψ〉. Then the expectation value is:

〈ÔS〉 = 〈Ô〉 = 〈ψ| Ô |ψ〉 (10.2)

=
1

2
〈0S| ÔS |0S〉+

1

2
〈1S| ÔS |1S〉 (10.3)

It is as if 〈ÔS〉 is the result of a statistical average over an ensemble of quantum states.
More precisely 〈Ô〉 is the average of its value for the system in the state |0S〉 and its value
for the system in the state |1S〉, with equal probabilities p = 1/2.

This notion of statistical mixture of states can be made formal. Consider two subsystems
S1 and S2 with the Hilbert spaces H1 and H2. Then the total system S is described by
the states in the space H = H1⊗H2. Suppose {|ϕ1〉 , ...} be the basis of H1 and {|η1〉 , ...}

81

Chapter 10: The Density Operator Formalism 82

of H2. Then:

|ψ〉 ∈ H (10.4)
|ψ〉 =

∑
jk

Cjk |ϕj〉 ⊗ |ηk〉 (10.5)

Assume that S1 is the system and S2 the environment. Consider a system observable
ÔS : H1 → H1. Then, in the full Hilbert space H, the corresponding operator is Ô =
ÔS ⊗ ÎE. Its expectation value is

〈ÔS〉 = 〈ψ| Ô |ψ〉 (10.6)
=
∑
jl

∑
m

c∗lmcjm 〈ϕl| ÔS |ϕj〉 (10.7)

=
∑
jl

ρjl[ÔS]lj = Tr(ρ̂ÔS) (10.8)

where ρ̂ is an operator in H1 whose matrix element are:

ρjl = 〈ϕj| ρ̂ |ϕl〉 =
∑
m

C∗
lmCjm (10.9)

This is the density matrix, in the basis that we are considering, and ρ̂ is the corresponding
density operator. We see that for every system’s observable we can compute 〈ÔS〉 =
Tr(ρ̂ÔS).

Therefore ρ̂ contains all info on the expectation values of observables of the system S1.
As we will see in a moment, it also contains all the information on the probabilities of
different measurement outcomes. It is therefore a full description of the system S1, when
in interaction with an environment S2. Let us look again at the expression of ρ̂:

ρ̂ =
∑
jl

ρjl |ϕl〉 〈ϕj| (10.10)

=
∑
jl

|ϕl〉

(∑
m

C∗
lmCjm

)
〈ϕj| (10.11)

=
∑
jl

∑
m

|ϕl〉 〈ϕlηm| |ψ〉 〈ψ| |ϕjηm〉 〈ϕj| (10.12)

Using the completeness relation
∑

l |ϕl〉 〈ϕl| = Î, we get

ρ̂ =
∑
m

(∑
l

|ϕl〉 〈ϕl|

)
〈ηm| |ψ〉 〈ψ| |ηm〉

(∑
j

|ϕj〉 〈ϕj|

)
(10.13)

=
∑
m

〈ηm| |ψ〉 〈ψ| |ηm〉 (10.14)

= TrE(|ψ〉 〈ψ|) (10.15)

This is a partial trace. Notice that 〈ηm| |ψ〉 is not a number, and here we are actually
abusing of Dirac’s notation. It is a vector inH1 obtained by considering the full expansion

83 10.1 The density operator formalism

(10.5) of |ψ〉 and replacing each ket |ηk〉 with the inner product 〈ηm|ηk〉, i.e.,

〈ηm| |ψ〉 =
∑
jk

Cjk |ϕj〉 〈ηm| |ηk〉 (10.16)

=
∑
jk

Cjk |ϕj〉 δmk (10.17)

=
∑
j

Cjm |ϕj〉 (10.18)

The partial trace is a very important notion for open quantum systems. It allows ex-
pressing the density operator of one subsystem starting from the density operator of the
state of system and environment. The density operator ρ̂ has three properties which can
be easily proven. It is self-adjoint, it has trace one, and it is positive semidefinite, i.e.,

1. ρ̂† = ρ̂

2. Tr(ρ̂) =
∑

jm |Cjm|2 = 1

3. 〈ϕ| ρ̂ |ϕ〉 ≥ 0 ∀ |ϕ〉 ∈ H1

The trace formula (10.8) to compute expectation values must hold equally for an isolated
system in state |ψ〉. Then, the density operator corresponding to the state |ψ〉 is given
by

ρ̂ = |ψ〉 〈ψ| . (10.19)
Indeed, 〈Ô〉 = Tr(ρ̂Ô) = Tr(|ψ〉 〈ψ| Ô). We use the fact that the trace is independent
of the choice of the basis. By choosing a basis where the first basis vector is |ψ〉 and all
other basis vectors are chosen to be orthogonal to |ψ〉, we get 〈Ô〉 = 〈ψ| Ô |ψ〉.

When ρ̂ = |ψ〉 〈ψ|, the system is said to be in a pure state (as opposed to a statistical
mixture). A state described by ρ̂ is pure if and only if Tr(ρ̂2) = 1.
Proof: ρ̂ = ρ̂†. Then diagonalize ρ̂:

ρ̂ =
∑
i

Pi |i〉 〈i| (10.20)

where |i〉 are the eigenvectors of ρ̂. Since Tr(ρ̂) =
∑

i Pi = 1 and ρ̂ is positive, the relation
0 ≤ Pi ≤ 1. For a system in a pure state |ψ〉, one has Pi = 1 for |i〉 = |ψ〉, and Pi = 0 for
all eigenstates orthogonal to |ψ〉. Then Tr(ρ̂2) =

∑
i P

2
i = 1.

In general, Tr(ρ̂2) ≤ 1. If Tr(ρ̂2) < 1 holds strictly, then the system is in a statistical
mixture. In this state, the properties of the system are described by the average properties
of a statistical ensemble of pure states. This can be seen by computing the expectation
value of a system observable Ô using the spectral representation of the density operator
ρ̂ =

∑
i Pi |i〉 〈i|

〈Ô〉 = Tr(ρ̂Ô) =
∑
i

〈i|ρ̂Ô|i〉 (10.21)

=
∑
i

Pi〈i|Ô|i〉 (10.22)

=
∑
i

Pi〈Ô〉i (10.23)

Chapter 10: The Density Operator Formalism 84

So the expectation value is expressed as the statistical average of the quantum expectation
value on each state |i〉 of the statistical ensemble, with the corresponding probabilities
Pi.

We can also express the measurement probabilities with the density operator. According
to the measurement postulate, if we measure Ô on |ϕ〉 with eigenvalues oi and eigenvectors
|oi〉, then the probability of measuring the eigenvalue oi is p(oi) = 〈ϕ| P̂i |ϕ〉, where
P̂i = |oi〉 〈oi| if the eigenvalue oi is non-degenerate.

We now apply the measurement postulate on the system plus environment, i.e. to the
global state |ψ〉. Then

p(oi) = 〈ψ| P̂i ⊗ I |ψ〉 (10.24)

We note that P̂i is a projector i.e. P̂i
2
= P̂i and P̂i = P̂i

†. Then P̂i ⊗ I is also a projector
and we can replace P̂i ⊗ I→ (P̂i ⊗ I)2. Then

p(oi) = 〈ψ| P̂i ⊗ I |ψ〉 (10.25)
= 〈ψ| (P̂i ⊗ I)2 |ψ〉 (10.26)
=
∑
jk

〈ψ| P̂i ⊗ I |oj〉 |ηk〉 〈ηk| 〈oj| P̂i ⊗ I |ψ〉 (10.27)

=
∑
k

〈ψ| |oiηk〉 〈oiηk| |ψ〉 (10.28)

= 〈oi| (
∑
k

〈ηk| |ψ〉 〈ψ| |ηk〉) |oi〉 (10.29)

= 〈oi|TrE(|ψ〉 〈ψ|) |oi〉 (10.30)
= 〈oi| ρ̂ |oi〉 (10.31)

But ρ̂ =
∑

i Pi |i〉 〈i|. Then:

〈Ô〉 = 〈oi| ρ̂ |oi〉 (10.32)
=
∑
i

Pi 〈oi| |i〉 〈i| |oi〉 (10.33)

=
∑
i

Pi||P̂i |i〉 ||2 (10.34)

=
∑
i

Pi〈Ô〉|i⟩ (10.35)

which completes our interpretation of ρ̂ as a statistical mixture. It is as if the measurement
is repeated several times, each time on a state taken from a statistical ensemble of states
|i〉 distributed with probability Pi.

If the global state of system and environment is itself a statistical mixture ρ̂, then the
above derivation can be generalized and the expectation value and measurement proba-
bilities of a system observable ÔS are expressed as

〈ÔS〉 = Tr(ρ̂SÔS) (10.36)
p(oi) = 〈oi| ρ̂S |oi〉 , (10.37)

85 10.1 The density operator formalism

where ρ̂S = TrE(ρ̂). In case the eigenspace associated to the eigenvalue oi is degener-
ate, the expression for the expectation value remains unchanged, while the measurement
probabilities are now given by

p(oi) = Tr(ρ̂SP̂i) , (10.38)

where now P̂i is the orthogonal projector on the degenerate eigenspace associated to the
eigenvalue oi.

One relevant question is how entanglement is represented in the density operator formal-
ism. This turns out to be a quite complex question and there are no systematic ways to
measure the amount of entanglement of a mixed state. However, one can generalize the
notion of separable state to statistical mixtures. Assume a system S composed of two
subsystems S1 and S2. The most general separable state of S is

ρ̂ =
∑
j

pj ρ̂
(1)
j ⊗ ρ̂

(2)
j , (10.39)

where pj are probabilities and
∑

j pj = 1. Indeed, if Ô = Ô(1) ⊗ Ô(2) then:

〈Ô〉 = Tr(ρ̂Ô) (10.40)
=
∑
j

pj Tr(Ô
(1) ⊗ Ô(2) ρ̂

(1)
j ⊗ ρ̂

(2)
j) (10.41)

=
∑
j

pj Tr(Ô
(1) ρ̂

(1)
j) Tr(Ô(2) ρ̂

(2)
j) (10.42)

=
∑
j

pj〈Ô(1)〉〈Ô(2)〉 (10.43)

which is the statistical average over the uncorrelated expectation value 〈Ô(1) ⊗ Ô(2)〉 =
〈Ô(1)〉〈Ô(2)〉.

Another important property of the density matrix is convexity. Density operators live in
the Liouville space S(H). The convexity implies that if ρ̂1 ∈ S(H) and ρ̂2 ∈ S(H) then
λρ̂1 + (1− λ)ρ̂2 ∈ S(H) for λ ∈ [0, 1].

Pure states, represented as |ψ〉 〈ψ|, are not decomposable into convex combinations of
density operators. Therefore, they reside on the boundaries of the space S(H) which
consists of all density matrices. A key result of this convexity is that a density matrix,
representing a mixed state, can be expressed in various ways using convex linear combina-
tions of other density matrices, highlighting the non-uniqueness of such representations.

Example: The totally mixed state, whose density operator is ρ̂ = Î, once cast in matrix
form it has the same matrix independently of the choice of the basis.

In conclusion, the formalism of the density operator is capable of representing all pure
states and is extendable to statistical mixtures. Furthermore, it generalizes the expres-
sions for expectation values and measurement probabilities to accommodate statistical
mixtures. Consequently, within the quantum information literature, states are expressed
more and more frequently as density operators, independently of their mixed or pure
nature, while the state-vector formalism is declining.

Chapter 10: The Density Operator Formalism 86

10.1.1 Time evolution of the density operator
To fully establish the density matrix formalism, it is essential to describe the temporal
evolution of a statistical mixture. The simplest scenario arises when there is no interaction
with the environment over time. Consider a statistical mixture that has been prepared
at time t = 0

ρ̂(0) =
∑
j

Pj |ϕj〉 〈ϕj| (10.44)

. Due to the absence of coupling to the environment, each pure state |ϕj〉 will evolve
according to |ϕj(t)〉 = Û(t, 0) |ϕj〉, where Û(t, 0) is the unitary time evolution operator.
Then

ρ̂(t) =
∑
j

PjÛ(t, 0) |ϕj〉 〈ϕj| Û †(t, 0) (10.45)

= Û(t, 0)ρ̂(0)Û †(t, 0) , (10.46)

The evolution thus remains unitary, and the operator Û(t, 0) obeys the usual equation

i
∂

∂t
Û(t, 0) = Ĥ(t)Û(t, 0) , (10.47)

where Û(t, 0)Û †(t, 0) = I. Consequently, the equation governing the time evolution of the
density operator is

∂

∂t
ρ̂(t) = −i[Ĥ(t), ρ̂(t)] . (10.48)

This equation is referred to as the Von Neumann equation. It resembles the time-evolution
equation for observables in the Heisenberg picture, but it has an opposite sign on the
right-hand side.

What happens if the system interacts with an external environment over time? Equations
ρ̂(t) = Û(t, 0)ρ̂(0)Û †(t, 0) and ˙̂ρ(t) = −i[Ĥ(t), ρ̂(t)] can be generalized. The generalization
of the time-evolution equation results in the celebrated Lindblad-Von Neumann Master
equation, under the general assumption of a Markovian environment. In quantum com-
puting one is almost always interested in the integral form of the time evolution. In this
case, the time-evolution operator can be generalized into the notion of quantum channel.

To define a quantum channel, assume that the evolution of the density matrix arises
from the unitary evolution of the system plus environment. Suppose that the initial
state of system and environment is |ψ〉S ⊗ |ψ〉E, and that we define an orthogonal ba-
sis {|0〉E , |1〉E , ..., |N − 1〉E} of the environment. It is safe to assume N finite, as we
can always assume that only a finite subspace of the Hilbert space of the environment
is involved in the system-environment interaction. Then the unitary evolution can be
expressed as

Û |ψ〉S ⊗ |ψ〉E =
N−1∑
a

M̂a |ψ〉S ⊗ |a〉E (10.49)

where M̂a are the operators acting on the H space of the system. Notice that the vectors
M̂a |ψ〉S are not normalized, as they contain the amplitudes associated with the expansion
of Û . In other words

Û |ψ〉S ⊗ |ψ〉E =
∑
a

Ca |ϕa〉S ⊗ |a〉E (10.50)

87 10.1 The density operator formalism

where we have defined Ca |ϕa〉S = M̂a |ψ〉S. Since Û is unitary, then

||Û |ψ〉S ⊗ |0〉E ||
2 = 1 (10.51)
= ||M̂a |ψ〉S ⊗ |a〉E ||

2 (10.52)
=
∑
a,b

〈ψ| M̂ †
aM̂b |ψ〉 〈a| |b〉 (10.53)

=
∑
a

〈ψ| M̂ †
aM̂a |ψ〉 (10.54)

This must be true for any |ψ〉 as the operator M̂a define Û and do not depend on |ψ〉.
Then the relation holds: ∑

a

M̂ †
aM̂a = I (10.55)

If we now trace onto the environment, the initial state is

ρ̂(0) = TrE(|ψS〉 |0〉E 〈0|E 〈ψ|S) (10.56)
= |ψ〉S 〈ψ|S , (10.57)

and the state at time t is

ρ̂(t) = TrE

((∑
a

M̂a |ψ〉S |a〉E

)(∑
b

〈b|E 〈ψ|S M̂
†
b

))
(10.58)

=
∑
a

M̂a |ψ〉S 〈ψ|S M̂
†
a (10.59)

=
∑
a

M̂aρ̂(0)M̂
†
a ≡ E(ρ̂(0)) (10.60)

We see that this is the generalization of the unitary case in which ρ̂(0)→ Uρ̂(0)U †, where
U †U = I

Notice that the map ρ̂→ E(ρ̂) is linear. Therefore it also holds if the initial state is not
a pure state. A linear map ρ̂ → E(ρ̂) =

∑
a M̂aρ̂M̂

†
a is called a quantum channel. Other

names are super operator for E , because it acts on the Liouville space of density matrices,
operator-sum representation, or trace-preserving completely positive map (TPCP). The
M̂a operators are called Kraus operators, and the number of Kraus operators is the
Kraus number or Kraus rank.

The properties of a quantum channel are:

1. Linearity: E(αρ̂1 + βρ̂2) = αE(ρ̂1) + βE(ρ̂2)

2. Preserves hermiticity: ρ̂ = ρ̂† =⇒ E(ρ̂) = E(ρ̂)†

3. Preserves positivity: ρ̂ ≥ 0 =⇒ E(ρ̂) ≥ 0

4. Preserves trace: Tr(ρ̂) = 1 =⇒ Tr(E(ρ̂)) = 1

These properties explain the TP.P in TPCP. Complete positivity means that if we extend
the Hilbert space HS → HS ⊗H

′ then E ⊗ I (obtained from M̂a ⊗ I) is also positive for
any possible extension H′ .

Chapter 10: The Density Operator Formalism 88

One can show that the property of complete positivity is needed for a quantum channel
to represent quantum mechanical evolution and is fulfilled by the operator-sum repre-
sentation. It can also be shown that any trace-preserving completely positive (TPCP)
linear map is a quantum channel, i.e., it has both an operator-sum representation and a
unitary representation on an appropriately extended Hilbert space. This highlights the
generality of the operator-sum representation. Moreover, the operator-sum representa-
tion of a quantum channel is not unique. By changing the basis of environment states,
one gets different Kraus operators for the same quantum channel: if |a〉 =

∑
µ |µ〉Vµa,

then the Kraus operators N̂µ =
∑

a VµaM̂a define the same quantum channel. Another
remark is that a quantum channel is generally irreversible, and is reversible if and only
if it is unitary.

10.1.2 Noisy quantum channels
We are now at the section of interest in terms of quantum computing and introduce three
quantum channels that are commonly identified as the main types of errors occurring on
qubits in a quantum computer.

Depolarizing channel

This is the most commonly assumed error on a qubit. With probability 1-p the qubit
does nothing, but with a probability of p and error occurs as follows, the error can be of
three types:

1. Bit flip: |ψ〉 → σ̂1 |ψ〉 where σ̂1 =
(
0 1
1 0

)
2. Phase flip: |ψ〉 → σ̂3 |ψ〉 where σ̂3 =

(
1 0
0 −1

)
3. Both errors: |ψ〉 → σ̂2 |ψ〉 where σ̂2 =

(
0 −i
i 0

)
σ̂j are Pauli matrices as we know. The unitary representation requires an environment
of dimension d=4, as we know we have 4 possible outcomes.

Û |ψ〉 ⊗ |0〉 =
√

1− p |ψ〉 ⊗ |0〉+
√
p

3
(σ̂1 |ψ〉 ⊗ |1〉+ σ̂2 |ψ〉 ⊗ |2〉+ σ̂3 |ψ〉 ⊗ |3〉) (10.61)

From here we can derive the operator-sum representation by tracing over the environment.
We see that in general M̂a = 〈a|E Û , in this case:

M̂0 =
√

1− p I

M̂1 =

√
p

3
σ̂1, M̂2 =

√
p

3
σ̂2, M̂3 =

√
p

3
σ̂3

(10.62)

From the properties of the Pauli matrices we easily check that
∑

a M̂
†
aM̂a = I. Finally:

E(ρ̂) = (1− p)ρ̂+ p

3
(σ̂1ρ̂σ̂1 + σ̂2ρ̂σ̂2 + σ̂3ρ̂σ̂3) (10.63)

We see that this error corresponds to assuming that on a qubit one of the three possible
Pauli errors occur with probability p/3. The probability p transfers into an error rate for

89 10.1 The density operator formalism

physical quantum hardware. Then, the so called digital error model is often adopted to
model errors. Instead of actually evolving the density matrix of a quantum computer with
E(ρ̂), one simulates the circuit by including random unitary errors σ̂j with probability
p on each qubit. The density matrix ρ̂ of the output state of the noisy circuit is then
obtained by statistically averaging over several repetitions of the circuit, each time with
a random configurations of errors.

Dephasing channel

It is also known as phase-damping channel, it is a toy model for decoherence and it can
be used to explain the Schrödinger’s cat paradox. Unitary representation: it needs three
states in the environment, on the computational basis:

|0〉 ⊗ |0〉 →
√

1− p |0〉 ⊗ |0〉+√p |0〉 ⊗ |1〉
|1〉 ⊗ |0〉 →

√
1− p |1〉 ⊗ |0〉+√p |1〉 ⊗ |2〉

(10.64)

Operator sum-representation:

M̂0 =
√
1− p I, M̂1 =

√
p

(
1 0
0 0

)
, M̂2 =

√
p

(
0 0
0 1

)
(10.65)

We see that:
M̂1 =

√
p

2
(I + σ̂3), M̂2 =

√
p

2
(I− σ̂3) (10.66)

Then:
E(ρ̂) =

∑
a

M̂aρ̂M̂
†
a = (1− p

2
)ρ̂+

p

2
σ̂3ρ̂σ̂3 (10.67)

From which we can also deduce the corresponding digital error model. Notice that if:
ρ =

(
ρ00 ρ01
ρ10 ρ11

)
then E(ρ) =

(
ρ00 (1− p)ρ01

(1− p)ρ10 ρ11

)
Suppose p = Γ∆t << 1 where ∆t is a time step and Γ and error rate. Then for t→ n∆t
we have:

En(ρ) =
(

ρ00 (1− p)nρ01
(1− p)nρ10 ρ11

)
(10.68)

This models the time evolution with dephasing error occurring with probability per unit
time Γ. But (1− p)n = (1− Γt

n
)n

n→ ∞−−−−→
∆t→ 0

e−Γt Then:

ρ(t) =

(
ρ00 e−Γtρ01

e−Γtρ10 ρ11

)
(10.69)

We see that only the off-diagonal terms decay. Suppose we start with a schrödinger’s cat
state |ψ〉 = α |0〉 + β |1〉, where |0〉 represents the cat being alive and |1〉 represents the
cat being dead. Then at t=0:

ρ̂(0) = |ψ〉 〈ψ|

ρ(0) =

(
|α|2 αβ∗

α∗β |β|2
) (10.70)

Chapter 10: The Density Operator Formalism 90

Then at a later time we will have:

ρ(t) =

(
|α|2 αβ∗e−Γt

α∗βe−Γt |β|2
)
→
(
|α|2 0
0 |β|2

)
(10.71)

which is just a statistical mixture of dead/alive. So decoherence transforms the crazy
pure state |ψ〉 into a trivial statistical mixture, meaning by repeating the experiment,
the cat was dead from the very beginning with a probability of |α|2 and alive with the
probability of |β|2. Γ is the result of the interactions of all the microscopic degrees of
freedom with the environment. Then Γ is very large for large systems and decoherence
occurs very fast. This is the most basic interpretation of decoherence and of why it is
difficult to prepare macroscopic systems in a quantum superposition of states. However
this simple picture is not complete and not conclusive.

Amplitude damping channel

This channel describes the process in which a qubit decays from |1〉 to |0〉 by emitting
some energy into the environment. Notice that this assumes some physical knowledge
of the quantum computer, as we are assuming that the energies associated with |1〉 and
|0〉 are different and that |1〉 and |0〉 are eigenstates of the system without external control.

The unitary representation requires two pointer states in the environment:

|0〉S ⊗ |0〉E → |0〉S ⊗ |0〉E
|1〉S ⊗ |0〉E →

√
1− p |1〉S ⊗ |0〉E +

√
p |0〉S ⊗ |1〉E

(10.72)

The corresponding Kraus operators are:

M0 =

(
1 0
0
√
1− p

)
, M1 =

(
0
√
p

0 0

)
(10.73)

and
∑

aM
†
aMa = I can be easily verified. M1 describes the ”jump” from |1〉 to |0〉, M0

describes what happens if no jump occurs. The initial density matrix ρij varies as:

ρ→ E(ρ) =M0ρM
†
0 +M1ρM

†
1 =

(
ρ00 + pρ11

√
1− pρ01√

1− pρ10 (1− p)ρ11

)
(10.74)

As before, set p = Γ∆t << 1 and t → n∆t. Then (1 − p)n = (1 − Γt
n
)n

n→ ∞−−−−→
∆t→ 0

e−Γt and
the same limit holds under the square root. Then, n applications of E(ρ) with a constant
t and n→∞ gives:

ρ(t) =

(
ρ00 + (1− e−Γt)ρ11 e−Γt/2ρ01

e−Γt/2ρ10 e−Γtρ11

)
(10.75)

The amplitude damping channel thus causes a decay of both the ”coherences” (i.e. the
off-diagonal terms of ρ) and of the ”populations” (i.e. the diagonal terms) with two time
constants: T1 = Γ−1 and T2 = 2T1 = 2Γ−1. In the limit t→∞ the qubit will irreversibly
decay to the state |0〉 i.e. ρ(t)→ |0〉 〈0|.

Notice that the dephasing channel only makes the coherence decay, with a character-
istic time that is usually called T ∗

2 , T ∗
2 is the decoherence time, or pure dephasing time,

as it only affects the coherences without touching the population. In a physical system
usually both processes are present and one defines T ′

2 such that 1

T
′
2

= 1
T2

+ 1
T ∗
2

Chapter 11

Quantum Error Correction

11.1 Quantum error correction
Digital electronics and computers in particular are subject to errors. Similarly, quantum
computers are subject to errors. QEC is about the theory and methods of error detection
and correction in QC.

Error rates in classical modern RAM range in the order of 10−10 errors/bit/hour. (The
fundamental limit to errors are cosmic rays!) These errors are mostly not corrected. They
almost always affect non-sensible data (such as picture or videos) but they can indeed
compromise code execution and are the major cause of crashes or data corruption in
large-scale comp. facilities.

Some sensible hardware adopts Error-Correcting Code memory (ECC-RAM) which can
correct (and detect) errors up to n bits.

The scenario is different in QC for two reasons.

First, error rates are much higher at the time of writing. Roughly 10−2 error per 2-qubit
operation, and 10−3 error per 1-qubit operation, and roughly 3% error at readout. With
such an error rate, we cannot run an arbitrary algorithm successfully without an error
correction strategy.

There are however algorithms specially conceived for operating on Noisy Intermediate-
Scale Quantum hardware (NISQ). These algorithms can operate with errors because
the output is distributed randomly around the ideal output, which can be statistically
extrapolated.

An example is algorithms to compute the expectation values of Hamiltonians, used in
Variational Quantum Eigensolvers (VQE).

Second, classical computers can run a parity check, i.e. read the memory and algorithmi-
cally detect which error occurred so that it can be corrected. In a quantum memory, if
we read a register, it will collapse over the state that has been read out, in an irreversible
way, eventually destroying the information.

QEC must thus develop ways of correcting errors in an agnostic way with respect to the
actual state of the register.

91

Chapter 11: Quantum Error Correction 92

11.2 Repetition codes
Classical ECC may use the strategy of cloning logical data onto physical memory. Con-
sider the code:

0→ 000 1→ 111 (11.1)

Here we will call a “code” a way in which logical data is encoded onto physical hardware.
Can we build a quantum repetition code?

No. A QRC needs to clone any arbitrary quantum state |ψ〉 of a qubit:

|ψ〉 → |ψ〉 ⊗ |ψ〉 ⊗ |ψ〉 (11.2)

This is not possible because of the no-cloning theorem, stating that it is not possible
to clone an arbitrary quantum state without any prior knowledge of what state it is.
However, we can still encode the comp. basis using repetition. Take 3 qubits:

|0〉 → |0L〉 = |000〉, |1〉 → |1L〉 = |111〉 (11.3)

This does not violate the no-cloning because:

|ψ〉 = α|0〉+ β|1〉 → α|000〉+ β|111〉 (11.4)

It can be simply realized by the following circuit:

|ψ〉

|0〉

|0〉

(11.5)

This code protects against a specific error, the bit-flip error X. Let us define the error
syndrome, i.e. observables with two important features:

1. They detect which error on which physical qubit. 2. Measuring them doesn’t alter
quantum info.

Introduce the four observables:

P0 = |000〉〈000|+ |111〉〈111| no error (11.6)

P1 = |100〉〈100|+ |011〉〈011| error on qubit 1 (11.7)

P2 = |010〉〈010|+ |101〉〈101| error on qubit 2 (11.8)

P3 = |001〉〈001|+ |110〉〈110| error on qubit 3 (11.9)

Suppose a bit flip on qubit 1 occurred. Now:

93 11.2 Repetition codes

|ψ〉 = α|100〉+ β|011〉 (11.10)

Notice that P1|ψ〉 = |ψ〉 and 〈ψ|P1|ψ〉 = 1. So if we measure P1, we obtain 1 with
certainty, and there is no collapse, so α and β are preserved. If we measure P0, P2, P3,
then 〈ψ|Pj|ψ〉 = 0.

There is no outcome and no projection, as we are measuring an observable acting on a
subspace orthogonal to |ψ〉. Either way, the information is preserved.

So the QECC can measure the Pj’s. If P0 = 1, then do nothing. If Pj = 1 with j = 1, 2, 3,
then apply X to the corresponding qubit. We see that:

X1(α|100〉+ β|011〉) = α|000〉+ β|111〉 (11.11)

and the error is corrected without losing quantum information.

Two questions: First, can we correct X-errors on more than 1 qubit? Second, can we
correct errors other than X?

QEC theory provides answers to these two questions. Let’s start from the second. Notice
first that the code:

|0〉 → |0L〉 = |+++〉, |1〉 → |1L〉 = | − −−〉 (11.12)

where:

|+〉 = |0〉+ |1〉√
2

, |−〉 = |0〉 − |1〉√
2

(11.13)

Protects against the Z error, because Z|+〉 = |−〉 and Z|−〉 = |+〉, i.e. Z acts on |+〉
exactly as X on |0〉 and errors can be corrected in a similar way. Now, we can combine
the two strategies into a 9-qubit code known as Shor’s code.

|0〉 → |0L〉 = (|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉) (11.14)

|1〉 → |1L〉 = (|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉) (11.15)

As before, the inner repetition layer corrects signbit flip errors:

|010〉 ± |101〉 correction−−−−−→ |000〉 ± |111〉 (11.16)

The outer rep. layer corrects Z (i.e. phase flips) errors. This is done by measuring the
phase and taking the majority of three copies:

(|.〉+ |.〉)(|.〉 − |.〉)(|.〉+ |.〉) correction−−−−−→ (|.〉+ |.〉)(|.〉+ |.〉)(|.〉+ |.〉) (11.17)

Error syndromes can be defined and corresponding error correction operations found.

Chapter 11: Quantum Error Correction 94

Notice that the effect of a phase flip error on any of the 1st 3 qubits (or of any of the 3
qubits in the same group), is the same:

|000〉 ± |111〉 → |000〉 ∓ |111〉 (11.18)

This is OK because also the syndrome and error correction can be the same. For example,
a recovery op. would be Z1, Z2, Z3.

Now, this QECC allows to detect and correct also an X and a Z error on the same qubit,
as can be easily verified. Therefore, an error of the type XjZj can be corrected.

The following theorem also holds: If a QECC can correct errors A and B, then it can
also correct any linear combination of A and B.

Indeed, if the code can correct A and B, then there must be two error syndromes SA and
SB such that they are measured with certainty on A|Ψ〉 and B|Ψ〉, respectively. Then, if
the error aA+ bB occurs:

|Ψ〉 → aA|Ψ〉+ bB|Ψ〉 (11.19)
Measuring either SA or SB will collapse the state on A|Ψ〉 or B|Ψ〉, resp., because SA
and SB are orthogonal: SA is zero on B|Ψ〉 and SB is zero on A|Ψ〉.

After the collapse, we are left with one of the two errors, and we know which one it is,
so we can restore it using the corresponding recovery operator. An example is indeed
A = X and B = Z, because op. X and Z on the same qubit bring the code to orthogonal
states: on the 1st qubit,

(|000〉 ± |111〉)()() X−→ (|100〉 ± |011〉)()() (11.20)

(|000〉 ± |111〉)()() Z−→ (|000〉 ∓ |111〉)()() (11.21)

The power of QECC resides in this theorem which ultimately stems from the linearity of
quantum mechanics. Let us summarize:

If we can correct X and Z on a qubit, we can also correct XZ and ZX. We can also
correct any linear comb. of X,Z,XZ,ZX, and I. But we see that iXZ = Y and that
{I,X, Y, Z} are a basis of all self-adjoint ops on a single qubit. In particular,

R(θ, n̂) = e−iθn⃗·σ⃗ (11.22)

where σ⃗ = {X̂, Ŷ , Ẑ}, is the most general unitary op. on 1 qubit. Taylor expansion and
the fact that X2 = Y 2 = Z2 = I show that R(θ, n̂) is always a linear combination of
I,X, Y, Z.

We conclude that Shor’s code, and in general a code that can correct X and Z, can
correct any 1-qubit error.

The argument extends to linear comb. of errors on single-but different qubits: if one can
correct I ⊗ A ⊗ I ⊗ ... ⊗ I and I ⊗ B ⊗ I ⊗ ... ⊗ I, then also their linear comb. can be
corrected.

This makes it possible to correct to some extent small errors on multiple qubits. Suppose
you have an error:

A = ⊗(I + ϵEj) (11.23)

95 11.3 Knill-Laflamme Theorem

with a small ϵ:
A = I + ϵ(E1 ⊗ I ⊗ ...+ I ⊗ E2 ⊗ I + ...) +O(ϵ2) (11.24)

So to order ϵ, we can correct also small multiple errors. However, single-qubit QECC
can’t correct, in general, multiple qubit errors such as, e.g., XjZk with j 6= k.

A QECC that can correct such products, can by linearity correct all 2-qubit errors,
including entangling (i.e. non-separable) errors. Notice that all tensor products of I ×
X,Y, Z, with additional factors ±I and ±i, form the Pauli group Pn, which is important
for QECC.

This may all seem a bit confusing. It can however be generalized into a very neat theorem:

11.3 Knill-Laflamme Theorem
Given a code C (i.e. a subspace of the Hilbert space of dim 2n to encode n-qubits) and a
group of errors S, C detects/corrects S if and only if, for any pair of orthogonal codewords
|Φ〉, |Ψ〉 with 〈Φ|Ψ〉 = 0,

The two codewords must be orthogonal (i.e. distinguishable) also after errors. This
means that for any Er, Es ∈ S:

〈ErΦ|EsΨ〉 = 〈Φ|E†
rEs|Ψ〉 = 0 (11.25)

If one considers an orthogonal basis {|Ψ1〉, ..., |Ψk〉} of C, then the Knill-Laflamme con-
dition translates into:

〈Ψi|E†
rEs|Ψj〉 = δijCrs ∀Er, Es ∈ S (11.26)

where Crs does not depend on i, j. If Er, Es are chosen from an orthogonal basis of S,
then Crs is a hermitian matrix. We will discuss now the proof and its meaning.

11.3.1 Proof and Discussion
Consider a code C, i.e., a space of dim 2n. Consider two orthogonal states |Φ〉 and |Ψ〉
within the code. We may understand |Φ〉 and |Ψ〉 as two states of the comp. basis, or
just two arbitrary states.

The basic requirement of QECC is that if an error occurs, we must detect it. We may
also say that we must be able to distinguish it, but there are exceptions to this, as we
will see, for the states of the comp. basis.

However, for an arbitrary state |X〉 = α|Φ〉 + β|Ψ〉 with |α|2 + |β|2 = 1, and given two
errors (that are corrected by the code) E and F , we must be able to distinguish the
two errors. This means we must be able to distinguish the two states E|X〉 and F |X〉.
For arbitrary states, it is only possible to distinguish them with certainty if they are
orthogonal. Thus, we require:

〈X|E†F |X〉 = 0 ∀α, β ∈ C (11.27)

Chapter 11: Quantum Error Correction 96

This means:

|α|2〈Φ|E†F |Φ〉+ |β|2〈Ψ|E†F |Ψ〉+ αβ∗〈Φ|E†F |Ψ〉+ α∗β〈Ψ|E†F |Φ〉 = 0 (11.28)

For this to be true ∀α, β, we need the two products in the second line to be zero:

1. 〈Φ|E†F |Ψ〉 = 0 ∀|Φ〉, |Ψ〉 such that 〈Φ|Ψ〉 = 0,

2. 〈Φ|EF |Φ〉 = 0 ∀|Φ〉.

The first line would suggest that also:

〈Φ|EF |Φ〉 = 0 ∀|Φ〉 (11.29)

and this seems to repeat the initial requirement 〈X|E†F |X〉 = 0.

This second condition is sufficient but not necessary. In fact, in the Shor code we have
seen that a Z-error on each of the three qubits in the same group will give just a ”-” sign,
thus leading to the same state:

|000〉+ |111〉 → |000〉 − |111〉 (11.30)

The code is then said to be degenerate. Thus, we can accept that the correction can be
made on any one of the three qubits.

In conclusion, if E and F must be distinguished, then (1) and (2) are necessary. If E and
F can be corrected indistinctively, as for the Z-error in Shor’s code, then we may allow:

〈X|E†F |X〉 6= 0 (11.31)

However, condition (1) must still hold. If (1) does not hold, then it may build an error
G = αE + βF . We know that a code must be linear, so correct all lin. comb. of errors.
Therefore, |Φ〉 and |Ψ〉 must be orthogonal also after the same error G:

〈Φ|G†G|Ψ〉 = 0 ∀α, β (11.32)

But since G = αE + βF , this is only possible if condition (1) is fulfilled.

Finally, we see that another condition for QECC is:

〈Ψ|E†E|Ψ〉 = 〈Φ|E†E|Φ〉 (11.33)

This condition is required because we want to be able to revert the error. We require:

E†E|X〉 = eiθ|X〉 (11.34)

Recall that E is not necessarily unitary.

In general, for a noisy quantum channel:

E(ρ) =
∑

EjρE
†
j (11.35)

97 11.4 Bounds on the Parameters of a QECC

we only have: ∑
E†
jEj = I (11.36)

So the above condition is not obvious. Again, if:

E†E|X〉 = eiθ|X〉, (11.37)

then:

〈X|E†E|X〉 = e−iθ. (11.38)

= |α|2〈Φ|E†E|Φ〉+ |β|2〈Ψ|E†E|Ψ〉 (11.39)

(The cross terms are zero because of the other condition.) But since ∀α, β we have
|α|2 + |β|2 = 1, the only way to fulfill this requirement is that:

〈Φ|E†E|Φ〉 = 〈Ψ|E†E|Ψ〉. □ (11.40)

Similar considerations prove the orthogonal version of the theorem, starting from the
general one:

〈Ψi|E†
rEs|Ψj〉 = δijCrs, (11.41)

where Crs is a hermitian matrix if Es are taken from an orthogonal basis of generators.
If the code is non-degenerate, then Crs has minimum rank.

The Knill-Laflamme theorem is of fundamental importance for the design of QECCs.

11.4 Bounds on the Parameters of a QECC
We can set a bound on the parameters of a QECC. Each error E acting on each basis
codeword |Ψi〉 must produce a linearly independent state (i.e., orthogonal). All these
states must fit into the Hilbert space of the full system of n physical qubits, of dimension
2n.

If the code encodes k qubits and corrects up to t-qubit errors, then the following quantum
Hamming bound holds (for non-degenerate codes):

t∑
j=0

3j
(
n

j

)
2k ≤ 2n (11.42)

where the number between parentheses is the number of errors of weight t or less. The
”weight” of an error is the number of single qubit errors in the tensor product:

I ⊗ · · · ⊗ I ⊗ E2 ⊗ I ⊗ · · · ⊗ I (11.43)

has weight 2.

For t = 1, k = 1, we see that n ≥ 5. Indeed, there is an n = 5 code that we will introduce
later.

Chapter 11: Quantum Error Correction 98

If a code corrects t errors, then it is said to have distance:

d = 2t+ 1. (11.44)

Distance means that it takes d single qubit changes to go from one codeword to another.
A code using n qubits to encode k qubits with distance d, is denoted as [[n, k, d]]. The
double brackets are to distinguish the notation from that for classical ECC. Shor’s code
is a [[9, 1, 3]] code.

Another bound is on the existence of the code. A code exists if:
d−1∑
j=0

3j
(
n

j

)
2k ≤ 2n. (11.45)

Notice that d − 1 = 2t, so this bound is more restrictive than the other. Finally, the
Knill-Laflamme bound requires:

n− k ≥ 2d− 2. (11.46)

These last two bounds are given without proof.

We introduce now the notion of stabilizer, which makes the construction of QECC formal
and systematic.

11.5 The Stabilizer Formalism
To understand the stabilizer formalism, let us first review the Shor code. How do we
actually measure the 4 projectors?

It can be done by parity measurement. More specifically, take the first 3 qubits. By
measuring the observable:

Z ⊗ Z ⊗ I (11.47)
we can detect if a bit flip has occurred on the first two qubits. In fact, if the two qubits
are 00 or 11, the measure gives +1, and if they are different, the measure gives −1. Same
for qubit 2 and 3, by measuring:

I ⊗ Z ⊗ Z. (11.48)

Notice that the syndrome operators anticommute with the error operators. For example:

{Z ⊗ Z ⊗ I,X ⊗ I ⊗ I} = {Z ⊗ Z ⊗ I, I ⊗X ⊗ I} = 0. (11.49)

The two measurements tell us on which of the three qubits the error occurred. The
measurement can be carried out with C-Z’s and one ancilla qubit.

For example, for Z ⊗ Z ⊗ I, we will use the circuit:

code
|abc〉

|0〉 H

(11.50)

99 11.5 The Stabilizer Formalism

∑
abc

Cabc(|0〉〈abc|+ (−1)c00b |1〉〈abc|) =
∑
abc

Cabc(|0〉+ (−1)a⊕b|1〉)〈abc|. (11.51)

Now it is enough to measure on the |+〉 basis the ancilla qubit (first go to the comp.
basis with another Hadamard, then measure in the comp. basis) to know a⊕ b, which is
the parity of ab.

Notice that the anticommutation rule between the syndrome operator like Z⊗Z⊗ I and
the error operator X ⊗ I ⊗ I or I ⊗X ⊗ Z is the essential feature to detect the error.

If M is the syndrome and E the error, then on a codeword |Ψ〉 we have:

ME|Ψ〉 = −EM |Ψ〉 = −E|Ψ〉 (11.52)

because the codeword is per definition an eigenvector of M with eigenvalue +1 (no error
detected). So M is built in order to be the identity within the code space and not the
identity outside.

Similarly, for Shor’s code, to detect a Z-error, we must check if the signs of the three
qubits are all the same. For this we can measure:

X ⊗X ⊗ I ⊗X ⊗X ⊗ I ⊗ I ⊗ I ⊗ I and I ⊗ I ⊗ I ⊗X ⊗X ⊗X ⊗X ⊗ I ⊗ I. (11.53)

In fact, if one Z-error occurs in the 1st or 2nd group of three qubits, then:

|000〉+ |111〉 → |000〉 − |111〉. (11.54)

In the code, both groups must have the same sign, so if they are instead opposite, then
one of the two X⊗3 will give a +1 factor and the other a −1, for a total of a −1 factor,
thus signaling the error.

In total, we have 8 error syndromes:

Z Z I I I I I I I
I Z Z I I I I I I
I I I Z Z I I I I
I I I I Z Z I I I
I I I I I I Z Z I
X X X I I I I Z Z
X X X X X X I I I
I I I X X X X X X

(11.55)

Again, each of these generators anticommutes with the corresponding error detected.

One error E commutes with a particular set of syndromes {M}. Then measuring −1
on exactly all of the M ’s in {M} tells us that exactly that error occurred. Sometimes,
it is not possible to tell which error occurred, like for errors Z1 and Z2 in Shor’s code:
Z1|14〉 = Z2|14〉 for all codewords. This is not important because also the correction can
be carried out indistinctly on bit 1 or 2. This is an example of a degenerate code.

The S operators above generate an Abelian group called the ”Stabilizer” of the code.
The stabilizer contains all the operators M in the Pauli group, for which M |14〉 = |14〉
for all |14〉 in the code.

Chapter 11: Quantum Error Correction 100

Recall what a Pauli group is: The n-qubit Pauli group Pn is the group formed by all 4n
operators on n-qubits that are formed as tensor products of I,X, Y, or Z, for example
I ⊗X ⊗ Z ⊗ I ⊗X for 5 qubits, with an overall phase factor of ±1 or ±i.

Demonstrate that Pn is a group (the ±1 and ±i phases are required for Pn to be a group).
Pn is not Abelian. More precisely, any pair of elements M,N ∈ Pn either commute or
anti-commute, i.e.,

[M,N] =MN −NM = 0 or {M,N} =MN +NM = 0. (11.56)

Also, for each M ∈ Pn, M2 = ±I. We only need to work with M ∈ Pn such that
M2 = I, but the other elements (those with the phase ±i) are needed to provide the
group property.

We further define the ”weight” of an operator M ∈ Pn as the number of tensor factors
different from I. For example, X ⊗ Y ⊗ I has weight 2.

Conversely, given an Abelian subgroup S ⊂ Pn, we can define a QECC T (S) as the set
of all states |14〉 such that M |14〉 = |14〉 ∀M ∈ S.

The stabilizer S must be Abelian and cannot contain −I. Proof: If M,N ∈ S, then per
definition,

MN |14〉 =M |14〉 = |14〉 and NM |14〉 = N |14〉 = |14〉. (11.57)

So within the subspace T (S), we have:

[M,N]|14〉 = 0 (11.58)

but elements of the Pauli group Pn either commute or anti-commute. Then, if M,N
commute on a subspace, they must necessarily commute everywhere in the full Hilbert
space.

Clearly, if M = −I ∈ S, there is no |14〉 such that M |14〉 = |14〉.

Given a stabilizer with these properties, there is a non-trivial subspace whose states |14〉
are ”stabilized”, i.e., M |14〉 = |14〉 ∀M ∈ S.

Let us investigate the properties of stab codes. Recall the Knill-Laflamme condition for
QECC. Given a codespace T (S) with basis {|ψ〉} and correctable errors {Er}, then:

〈ψ|E†
rEs|ψ〉 = δijCrs, Crs indep. of ij. (11.59)

As we have seen, two errors E and F are correctable if (1) they act the same on codewords
or (2) they send T (S) on two disjoint orthogonal subspaces.

(1) E|14〉 = F |14〉 ∀|14〉 ∈ T (S)

=⇒ EF |14〉 = |14〉 =⇒ EF ∈ S. (11.60)

This is the case of Z1 and Z2 errors on Shor’s code. They can be corrected by the same
operation even if we don’t know which one occurred. The code is degenerate.

(2) E and F send T (S) into two orth. subspaces. E|14〉 and F |14〉 are orth. if |14〉 ∈
T (S),

〈ψ|E†F |ψ〉 = 0. (11.61)

101 11.5 The Stabilizer Formalism

But if E and F are correctable, then there is at least one generator M ∈ S such that

ME|14〉 = ±E|14〉 and MF |14〉 = ±F |14〉. (11.62)

i.e.,
{M,E} = [M,F] = 0 or {M,F} = [M,E] = 0. (11.63)

Then: (suppose {M,E} = 0)

0 = 〈ψ|E†F |ψ〉 = 〈ψ|ME†F |ψ〉 = −〈ψ|E†FM |ψ〉 (11.64)

= −〈ψ|E†FM |ψ〉 = −〈ψ|E†FM |ψ〉 =⇒ {M,E†F} = 0. (11.65)

Conversely, E,F are correctable if either EF ∈ S or ∃M ∈ S s.t. {M,EF} = 0.

Let us now count the states. We have 2n states in the full Hilbert space of n-qubits.
Suppose there are a generators in S. Generators have eigenvalues ±1 in equal number,
because M ∈ S =⇒ Tr(M) = 0 (they are Pauli operators).

T (S) is eigenspace of S with eigenvalue +1. All other orthogonal subspaces have eigen-
value +1 for some M ’s and −1 for some others.

(Because {M,E} = 0 or [M,E] = 0, the subspace ET (S) has constant eigenvalue for
each given M).

Then we can have 2a distinct “error syndromes”, i.e., sets of ±1 eigenvalues for allM ∈ S.
So we have 2a distinct subspaces which must fit into the total space of dim 2n. We know
that all these subspaces exist because for each error syndrome (+1,−1, . . . ,+1,−1).

There is at least one element of the Pauli group Pn that has that syndrome. Then

dim(T (S)) = 2n/2a = 2n−a = 2k (11.66)

Hence a stabilizer S on n physical qubits, with a generators, corrects errors on k = n− a
logical qubits.

For example, Shor’s code has a = 8 generators and n = 9 qubits, so it fully corrects errors
on k = 1 logical qubit as we have seen.

What about the distance d of a stabilizer code? We know that t = d− 1 is the maximum
weight of Pauli operators for which all operators with that weight are corrected.

There is not a simple formula for d apart from the bounds that we have already seen. In
particular:

n− k ≥ 2d− 2 (also for deg. codes) (11.67)

For Shor,
2d ≤ n− k + 2 =⇒ d ≤ n− k + 1

2
= 5 (11.68)

We have d = 3.

Until now, our analysis has identified two types of elements of the Pauli group Pn:

1. M ∈ Pn such that M ∈ S (generators of S).

Chapter 11: Quantum Error Correction 102

2. E ∈ Pn such that E /∈ S and there is at least one M ∈ S such that {M,E} = 0.
These are the correctable errors.

There is obviously a third subset of Pn:

3. G ∈ Pn such that G /∈ S but ∀M ∈ S, [G,M] = 0. There are not generators and
not correctable errors.

Notice that ∀ |Ψ〉 ∈ T (S) and ∀M ∈ S,

MG |Ψ〉 = GM |Ψ〉 = G |Ψ〉 . (11.69)

Therefore, G |Ψ〉 ∈ T (S).

But it can’t be that G |Ψ〉 = |Ψ〉 ∀ |Ψ〉, otherwise G would be in S.

We conclude that G is a nontrivial operation acting on the codespace.

Given a subset S of a group P , the centralizer C(S) is the set of elements g of P such
that

[g,M] = 0 ∀M ∈ S. (11.70)

The normalizer N(S) obeys a weaker condition that

gS = Sg, i.e., ∀M ∈ S, gM = Ng with N ∈ S. (11.71)

For the Pauli group, for which elements either commute or anticommute, N(S) and C(S)
coincide.

Proof: if gM = Ng, then g−1Ng = M but g−1Ng = ±g−1gN = ±N . Now, if N ∈ S
then −N = (−I)N ∈ S because −I ∈ S. Thus, g−1Ng = ±N .

So N(S) for a stabilizer code S contains all g that commute with all elements of S,
including the elements of S itself.

Then N(S)− S is the set of all nontrivial operators on codewords.

Notice that if g ∈ N(S) and M ∈ S, then h = gM ∈ N(S) as well. And:

h |Ψ〉 = gM |Ψ〉 = g |Ψ〉 , ∀ |Ψ〉 ∈ T (S). (11.72)

All operators h = gM form a coset of S in N(S) (left or right coset, it doesn’t matter
because gM =Mg).

So all operators h in the same coset of S in N(S) act as the very same Pauli operation
on codewords.

Choosing one such element h from each distinct coset (they form equivalence classes),
gives a set of Pauli operators on the code, i.e., defines the Pauli group Pk.

In group theory, this corresponds to defining the factor group:

N(S)/S which is the set of cosets of S in N(S). (11.73)

Its order (No. of elements) is 4k.

Let us now just introduce two well-known stabilizer codes for k = 1, i.e., 1 qubit.

103 11.5 The Stabilizer Formalism

11.5.1 Steane code

Z Z Z Z I I I

Z Z I Z Z I I

Z I Z I Z I Z

X X X X I I I

X X I I X X I

X I X I X I X

(11.74)

It has 6 generators on 7 qubits, so it encodes 1 qubit. It is a [[7, 1, 3]] code.

11.5.2 Calderbank-Shor-Steane code
Between classical and quantum ECC known as Calderbank-Shor-Steane construction or
CSS constr. For each classical ECC, it is then possible to build a QECC using the CSS
constr. A non-CSS code which is even smaller is the [[5, 1, 3]] code, which is the minimal
code fulfilling the bounds given previously. The stabilizer is:

X Z Z X I

I X Z Z X

X I X Z Z

Z X I X Z

(11.75)

We may now ask the question: why is it so hard to build an error-proof quantum com-
puter? Isn’t it sufficient to use one of these codes to encode logical qubits?

Let us put aside the fact that we may want to correct errors with k > 1 and d > 3. The
problems are two:

1. To actually implement a code, we need to execute some quantum circuits. Are we
adding more errors?

2. Once we have the QECC, how do we encode logical non-Pauli quantum gates on
it?

These questions introduce the topic of fault-tolerant quantum computing.

Chapter 12

Fault Tolerant Quantum Computing

12.1 Fault Tolerance
We conclude our overview of QECC with the notion of fault tolerance and the threshold
theorems. For this, we need to introduce a very important class of quantum gates: the
so-called Clifford group.

The Clifford group plays a fundamental role in quantum computing for several reasons:

• Clifford gates are sufficient to encode and decode stabilizer codes.

• Clifford gates can be “easily” quantum-error-corrected via the idea of “transversal”
gate encoding.

• The Gottesman-Knill theorem poses that circuits made of Clifford gates only can
be simulated classically with polynomial complexity.

• More recent works have shown that the exponential complexity of quantum circuits
only depends on the amount of non-Clifford gates present in the circuit. More
precisely, if a circuit contains t non-Clifford gates, then its classical emulation has
complexity O(2αtt3) (see S. Bravyi, arXiv:1601.07601).

• Circuits made of Clifford gates only can produce highly entangled states, yet can be
simulated efficiently using classical algorithms. This casts light on the very subtle
role of entanglement in determining the exponential speedup of some quantum
algorithms.

12.2 Clifford group
The Clifford group for n physical qubits is defined as:

Cn =
{
U ∈ U(2n) s.t.UPU † ∈ Pn ∀P ∈ Pn

}
(12.1)

where Pn is the Pauli group for n qubits. That is, the Clifford group is the normalizer of
the Pauli group Pn in the group of unitary operators U(2n).

104

105 12.3 Gottesman-Knill Theorem

Examples of single-qubit operators in Cn are:

H =
1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (12.2)

For example, take X and Z in Pn:

HXH† = Z, HZH† = X. (12.3)

Notice that this is true also for X ⊗X in Pn:

H ⊗HX ⊗X H ⊗H = Z ⊗X. (12.4)

The operation UPU † is a conjugation operation and it induces a homomorphism of the
group:

UABU † = (UAU †)(UBU †). (12.5)

Then, for example, since Y = iXZ, we deduce that:

UY U † = iUXU †UZU † = −Y. (12.6)

So in order to specify a Clifford operator U , it is sufficient to indicate its action on the
generators of Pn, i.e., on X and Z on each of the n qubits.

In fact, the Clifford group is generated by the three operators above, H, S, and CNOT
(given without proof).

As already mentioned, for Clifford gates the following theorem holds:

12.3 Gottesman-Knill Theorem
Any circuit on n qubits, made of Clifford gates, with a simple initial state (i.e., compu-
tational basis) and with final Pauli measurement, can be simulated classically in poly(n)
time.

12.4 Fault Tolerance in Gates, State Prep., and Mea-
surement

We have seen that it is possible to detect and correct errors on sets of logical qubits,
thanks to QECC (and stabilizer codes in particular). However, to detect and correct
needs additional qubits and gates which will eventually introduce new errors. Also, we
still don’t know how exactly to carry out gates on logical qubits in a QECC in a safe
way, without making errors worse (propagating errors).

The goal of fault tolerance is to develop a full fault-tolerant protocol that makes the
processes of (1) error detection and correction, (2) applying gates on logical qubits, (3)
preparing initial states, and (4) measuring final states, resilient to some amount of errors

Chapter 12: Fault Tolerant Quantum Computing 106

occurring on physical qubits. In this way, we can take a quantum circuit designed to
work in the absence of errors and write a new circuit based on QECC, which produces
the exact same output, provided the error rate on the physical qubits is not too large.

One big obstacle is error propagation. Even if gates on codewords are perfect, an uncor-
rected error changes once a gate U is applied:

UE|ψ〉 = UEU †U |ψ〉. (12.7)

So the error is changed from E to UEU † after the gate is applied. This illustrates why
the Clifford group is important. If U ∈ Cn, then for E ∈ Pn, UEU † is also an element of
Pn, so it is another error.

If U is a tensor product of 1-qubit gates, then this doesn’t increase the weight of the
error:

(U1 ⊗ U2)(E1 ⊗ I)(U †
1 ⊗ U

†
2) = (U1E1U

†
1)⊗ I. (12.8)

However, if U is a non-separable 2-qubit operator, then the error will propagate. This
happens typically with the CNOT :

CNOT : X ⊗ I → X ⊗X, CNOT : I ⊗ Z → Z ⊗ Z. (12.9)

So if a QECC implies that CNOTs can be applied on physical qubits (and this will
always be the case, we can’t have a quantum computing paradigm made only of separable
operations), this may increase the weight of an error beyond the weight t that can be
corrected by the QECC.

Here we will focus on fault-tolerant protocol for applying gates to logical qubits. Similar
considerations can be used for the other steps, i.e., state preparation, error detection and
correction, and measurement.

Our scope is just to give an example of the challenges and solutions, while for a full
account of QECC we refer to more specific works and courses.

12.5 Transversal gates
A fundamental notion in a QECC protocol is that of transversal gates.

Recall that for a stabilizer code [[n, k, d]] with stabilizer S, the quotient group N(S)/S
contains all logical Pauli gates PL on logical qubits. Recall also that N(S)/S is the set
defined as:

N(S)/S = {aS, bS, . . . |a, b,∈ N(S)} (12.10)
where {aS} = {aM, aM2, . . . |M,M2, · · · ∈ S}.

So, a logical Pauli gate on the k logical qubits can be chosen among the elements of
N(S)/S where not only one but all the operations in one coset act as the same Pauli gate
on T (k).

Suppose, for example, we want to perform a logical Z̄ on one of the k-qubits (from now
on we will denote logical operations on logical codewords by a bar). We choose one of
the operations in the corresponding coset Q. Now Q ∈ Pn, so to execute it, we need to
execute some Pauli gates (or I) on each of the n physical qubits in the code.

107 12.5 Transversal gates

Since we apply single-qubit Pauli gates, there is no possibility for an error to propagate.
If there are m-Pauli errors in the k-qubit code before the application of Q, there will be
m Pauli errors on the same physical qubits after applying Q. This is only true because
Z is a Clifford operation, and the corresponding Q is also a Clifford operation, and is a
tensor product of single-qubit Clifford gates.

We have already seen in the last problem set that Z on the five-qubit code can be applied
by applying Z on all five qubits. You can show as an exercise that, for example, applying
H on Shor’s 7-qubit code is achieved by applying H⊗7. The logical operation is not
necessarily the product of the same physical operation on all qubits. For example, always
for Shor’s code, the logical S is achieved by applying S† on all physical qubits.

The notion of transversal gates arises once we try to extend this protocol to multiple-
qubit logical gates. Suppose Ū is a m-qubit gate. The corresponding Ū may propagate
errors within one block of k-qubits of a code.

The gate Ū is said to be transversal if it can be written as

Ū =
⊗
i

Ui (12.11)

where each Ui is a m-qubit gate on physical qubits, acting on the i-th qubit of each block
of the code. The Ui do not need to be the same.

Let us think of a simple example. Consider a k = 1 code T1(S), and consider two logical
qubits, encoded in T1(S) and T2(S):

Figure 12.1: An illustration of a transversal gate.

As already mentioned, the operators Ui do not need to be all the same, even though most
transversal gate constructions are indeed repetitions of identical gates.

In this transversal construction, if one error is present in, e.g., bit 1 of T1(S), then Ui will
propagate the error to bit 1 of T2(S). But this will not increase the weight of the error
within T1(S) or T2(S).

Even if errors are already present on bit 1 of both T1 and T2, this construction will leave
the number of errors in each logical qubit code Ti(S) unchanged. In this way, errors can
be corrected also after the application of Ū .

It is not possible to generalize the notion of transversal gates to gates acting on 1 qubit
only in each block, without the qubits being the same (first with first, etc.). This is
because, as one can easily verify, only by pairing i-th gate with i-th gate, we have that
the product of two transversal gates is still transversal.

As an example, applying ¯CNOT to two logical qubits encoded in two 7-qubit blocks, can
be achieved simply as

¯CNOT = CNOT⊗7 (12.12)

Chapter 12: Fault Tolerant Quantum Computing 108

The importance of Clifford gates is that in most stabilizer codes they admit logical
transversal encoding. For example, for the 7-qubit code, H, S, and CNOT are transver-
sal. Since products of transversal gates are transversal, this means that the whole Clifford
group can be implemented transversally.

The problem often arises with the T -gate, which cannot be simply implemented transver-
sally in most cases. In fact, one can prove that a QECC with transversally encoded
universal set of gates is impossible (see B. Eastin, E. Knill, arXiv:0811.4262).

A possible way to overcome the Eastin-Knill theorem is to add external resources to the
QECC, such as ancilla qubits bearing customarily prepared quantum states (magic state
distillation) or to avoid 2-qubit gates with the paradigm of measurement-based (one-way)
quantum computing.

Finding a simple way to realize a universal set of fault-tolerant quantum gates remains,
however, an open problem and a challenge in quantum computing.

12.6 Quantum Threshold Theorems
Perhaps the most groundbreaking discovery in the theory of QECC is the threshold
theorem (or rather “theorems” because they must be proved separately for each QECC).

The basic question we are trying to answer is: Are we sure that, by complexifying the
quantum hardware with a QECC, we are reducing the overall probability of having an
error on a logical qubit, instead of increasing it through the added qubits and gates where
errors can occur?

The answer turns out to be yes, provided the error rate p on a single physical qubit or
elementary gate is smaller than some threshold value pth.

We can provide an intuitive account of the proof by the following remarks. Suppose the
physical error rate is p. This is the rate at which k-qubit errors occur in a [[n, k, d]]
QECC. Then the rate of a k-qubit error on an encoded logical qubit is O(pe). We have
already had a glimpse of this on the simple

3-qubit Shor’s code to correct X-errors. If two X-errors occur on physical qubits, then
the majority criterion will detect a bit flip in the opposite direction. The correction will
then flip the only qubit unaffected by error and the result will be a logical X̄ on the
encoded logical qubit:

0̄ = |000〉, 1̄ = |111〉 (12.13)
|ψ〉 = α|000〉+ β|111〉 (12.14)

After two errors on, e.g., bits 1 and 3:

|ψ′〉 = α|101〉+ β|010〉 (12.15)

and the correction will lead to:

|ψ′′〉 = α|111〉+ β|000〉 = X̄|ψ〉. (12.16)

A similar argument holds for codes correcting k-errors, although it may be a bit more
difficult to prove it rigorously.

109 12.6 Quantum Threshold Theorems

Two errors occur with probability p2 if one error occurs with probability p. However,
there are several ways in which two errors can occur, and even those when counting also
the error correction part of the circuit. So, for a given QECC, the probability of one error
(of the same kind of those that are correctable on physical qubits) on a logical qubit is ...

p1 = Cp2 (12.17)

Similar considerations apply to 2-qubit logical gates that are encoded transversally.

Now we understand that the overall result of the QECC protocol is to improve the error
rate, if p < p1. This condition depends on the constant C.

For typical QECC, C is usually large because there are several ways in which two errors
can occur. Also, C is not so obvious to compute and it is known only approximately for
most codes.

For Steane’s 7-qubit code for example, a lower bound is C ' 104, but it is believed to be
in the range of 105 − 106.

So, a necessary condition for a QECC to be useful is that p1 < p, i.e.,

Cp < 1 or p <
1

C
= pth. (12.18)

Once this condition is achieved, we can apply a very intuitive and very elegant trick. We
now have an encoding for (logical) qubits, with error rate p1 < p.

We know how to implement universal gates on three qubits. Let us then pretend that they
are the physical qubits and let us build a QECC (the same as before, but not necessarily)
with them.

For example, if the 3-qubit code for correcting X is represented as:

Then our ”double” QECC will look like:

This code corrects X-errors on the logical qubits encoded at the 1st level, which in turn
occur when two X-errors occur at the zero-th (physical) level.

Now the rate of X-errors on the doubly encoded qubit is:

p2 = Cp21 = C3p4 (12.19)

Chapter 12: Fault Tolerant Quantum Computing 110

We see that the condition p2 < p1 gives:

C3p4 < Cp2 =⇒ Cp2 < 1 =⇒ Cp < 1 =⇒ p <
1

C
= pth. (12.20)

We see that this 2nd layer still improves the error rate by the same factor, provided the
physical error rate p is below threshold.

More generally, if we concatenate k QECC layers, the error rate will be:

pn =
(Cp)2

k

C
. (12.21)

which can become arbitrarily small by increasing k, provided Cp < 1.

More precisely, if we require an accuracy ϵ in the algorithm we wish to run, and that
the algorithm is made by a circuit with p(n) gates/locations (where n is the size of the
problem and p(n) is a polynomial function). All quantum algorithms are of this kind,
that is, with a poly(n) number of gates. Roughly, each gate/location must be accurate
to ϵ/p(n). Then for a QECC protocol to succeed we need:

(Cp)2
k

C
≤ ϵ

p(n)
. (12.22)

and we may choose k so that the cond. is fulfilled.

Note: A ”location” is a point in the circuit where a qubit is left idle or without a gate
acting on it at that particular time slice.

Now we can single out a condition on k:

(Cp)2
k ≤ Cϵ

p(n)
. (12.23)

2k log(Cp) = log

(
Cϵ

p(n)

)
. (12.24)

2k =
log
(

Cϵ
p(n)

)
log(Cp)

. (12.25)

Now, for our strategy to work, the size of the quantum hardware must not grow exponen-
tially with k. If one level of QECC requires d gates/locations, then the whole multiple
QECC protocol will require dk gates/locations (d is the factor that multiplies the number
of gates/locations of the naked circuit).

But from the previous expression for 2k,

dk =

 log
(
p(n)
Cϵ

)
log
(

1
Cp

)
log d/ log 2

. (12.26)

dk = O

(
poly

(
log

(
p(n)

ϵ

)))
. (12.27)

111 12.6 Quantum Threshold Theorems

Then, since the original circuit contains p(n) gates, the total number of gates/locations
needed is:

O

(
poly

(
log

(
p(n)

ϵ

))
p(n)

)
. (12.28)

which is only poly-logarithmically larger than the original circuit.

This finally constitutes the proof of the threshold theorem for quantum computation.

Theorem: A quantum circuit containing p(n) gates can be executed with probability of
error at most ϵ, using:

O

(
poly

(
log

(
p(n)

ϵ

))
p(n)

)
(12.29)

gates on hardware with physical error rate p, provided p < pth, where pth is determined
by the specific QECC protocol being used.

The reason why this theorem is a breakthrough is that it essentially proves that quan-
tum computation is possible, and not forbidden by some fundamental physical limit on
quantum hardware.

Today’s best QECC, like the surface code, have estimated pth = 10−2. Assuming a
physical error rate of p = 10−3 for depolarizing errors, this QECC protocol would require
∼ 103 − 104 physical qubits per logical data qubit. (This estimate is based on the
requirement that the final error rate be ∼ 10−10, similar to classical circuits).

An improvement of p would make the corresponding number of physical qubits N smaller.
Fault tolerance is still far away as the best quantum hardware today can achieve p ∼ 0.01.
An alternative promising field is that of non fault-tolerant quantum computing, using
NISQ hardware and hybrid quantum/classical algorithms featuring the use of ”shallow”
quantum subroutines.

Chapter 13

The Variational Quantum
Eigensolver

13.1 Variational Quantum Algorithms (VQA)
Variational Quantum Algorithms (VQAs) are a class of hybrid quantum-classical al-
gorithms designed to leverage the computational advantages of quantum devices while
utilizing classical resources for optimization. The core idea is to employ a parameter-
ized quantum circuit to perform tasks that are computationally expensive for classical
computers. The quantum device prepares a trial quantum state using a set of tunable
parameters, and the classical optimizer updates these parameters iteratively based on
measurements performed on the quantum device.

Figure 13.1 illustrates the hybrid feedback loop between the quantum device and the
classical optimizer.

Figure 13.1: Schematic representation of the VQA workflow. The quantum device pre-
pares a parameterized state and measures the expectation value of the objective function.
A classical optimizer updates the parameters iteratively to minimize the objective func-
tion.

VQAs are particularly well-suited for the current era of Noisy Intermediate-Scale Quan-
tum (NISQ) devices. Indeed, the iterative nature of VQAs and their reliance on short-
depth quantum circuits make them less sensitive to noise compared to algorithms requir-
ing deep quantum circuits. Moreover, VQAs leverage quantum devices for tasks such
as state preparation and expectation value estimation. Estimating an expectation value
on a NISQ device can be done approximatively. There are two contributions to the
error. The first is the statistical error due to the intrinsic probabilistic nature of the-
measurement in quantm mechanics – sometimes called shot noise – together with the
finite number of measurements that are used to estimate the statistical average. The
second is an unavoidable finite uncertainty and a systematic bias, both due to the noise
in the quantum device. The shot-noise error can be reduced by increasing the number
of measurements, while the NISQ error can only be mitigated with a range of techniques
called error mitigation.

112

113 13.2 The Variational Quantum Eigensolver (VQE)

In most VQAs, a parametrized quantum circuit U(θ) is used to prepare a quantum state
|Ψ(θ)〉 = U(θ)|0〉 that depends on a set of variational parameters θ. The quantum
state is then measured to estimate the expectation value L(θ) = 〈Ψ(θ)|O |Ψ(θ)〉 of an
observable O. The classical optimizer updates the parameters θ to minimize the objective
function, leading to an approximate solution to the problem at hand. The shot-noise error
originates from the fact that, in estimating the expectation value, we are using a finite
number of measurements to approximate the true expectation value, i.e.

L(θ) ≈ 1

N

N∑
i=1

〈Ψ(θ)||xi 〉〈 xi|O|Ψ(θ)〉 (13.1)

=
1

N

N∑
i=1

|〈xi|Ψ(θ)〉|2 〈xi|O|Ψ(θ)〉
〈xi|Ψ(θ)〉

, (13.2)

where the last line highlights that the estimate is a statistical average over the outcomes
xi of the measurements in the computational basis. The shot-noise error is due to the
intrinsic probabilistic nature of quantum measurements. To estimate the expectation
value with a given accuracy ϵ, the number of measurements N must scale as N ∼ 1/ϵ2.
This fact is simply a consequence of the central limit theorem, which states that the
error in the average of a random variable decreases as the square root of the number of
samples.

In a variational approach, the parametrized state |Ψ(θ)〉 is expected to be an approxima-
tion of the true target state |Ψtarget〉. Hence, another contribution to the accuracy of the
VQA is the approximation error. An upper bound to this error is the distance between
the approximate state and the target state, i.e., |||Ψ(θ)〉 − |Ψtarget〉||. The approxima-
tion error can be reduced by increasing the expressivity of the variational ansatz, i.e.,
by increasing the number of parameters or the depth of the quantum circuit. However,
increasing the expressivity of the ansatz also increases the number of parameters that
need to be optimized, which can lead to optimization challenges such as local minima
and slow convergence.

Variational Quantum Algorithms have demonstrated significant potential in several do-
mains, including quantum chemistry, optimization, and machine learning. In what fol-
lows, we will explore one of the most prominent VQAs, the Variational Quantum Eigen-
solver (VQE), in detail.

13.2 The Variational Quantum Eigensolver (VQE)
The Variational Quantum Eigensolver (VQE) was introduced in 2014 by Peruzzo et al. [?
] as a method to compute the ground state energy of quantum systems. It builds on
the principles of the Variational Monte Carlo (VMC) method, a classical algorithm for
solving optimization problems in quantum mechanics.

The goal of the VQE algorithm is to find the ground state energy of a given Hamiltonian
Ĥ. This is achieved by leveraging the variational principle, which states that for any trial
state |Ψ(θ)〉, parameterized by a set of variational parameters θ, the expectation value
of the Hamiltonian provides an upper bound to the ground state energy:

E(θ) = 〈Ψ(θ)|Ĥ|Ψ(θ)〉 ≥ E0, (13.3)

Chapter 13: The Variational Quantum Eigensolver 114

where E0 is the true ground state energy of Ĥ. By iteratively optimizing the parameters
θ, the trial state |Ψ(θ)〉 is improved until it approximates the ground state, and the
energy E(θ) approaches E0.

The variational ansatz |Ψ(θ)〉 is key to the predictive power of the algorithm. It is
constructed using a series of quantum gates that depend on the parameters θ. The
choice of ansatz is critical to the success of VQE, as it must balance two competing
requirements:

• Expressivity: The ansatz must be expressive enough to capture the ground state
of the Hamiltonian.

• Efficiency: The ansatz must be implementable on a quantum device with a poly-
nomial number of operations.

Today there is a large variety of criteriafor the choice of ansatz. Two broad classes
of Ansätze are the hardware-efficient ansätze, which are tailored to the native gate set
and connectivity of the quantum hardware, and the physically-motivated ansätze, which
incorporate domain-specific knowledge about the problem. The advantage of hardware-
efficient ansaätze is the fact that they can be kept shallow, resulting in a limited gate
count, thus reducing the impact of noise. The drawback is that they might not be expres-
sive enough to capture the ground state of the Hamiltonian wiht sufficient accuracy. In
addition, the optimization landscape of hardware-efficient ansätze can be more challeng-
ing to explore, as they do not account for the actual physics of the problem. Physically-
motivated ansätze, on the other hand, are designed to capture the physics of the problem,
making them more expressive. However, they can be more challenging to implement on
current quantum hardware due to their depth and gate count. Here we won’t discuss in
detail physically-motivated ansätze, but we will focus on hardware-efficient ansätze.

An example of a hardware-efficient ansatz is illustrated in the figure below. It consists
of alternating layers of single-qubit rotations and entangling gates. It is usually designed
to be compatible with the gate set and connectivity of specific devices. In the circuit
one can identify repeating layers. On layer consists of single-qubit rotations, which are
parametrized by the variational parameters θ, and entangling gates, which create entan-
glement between the qubits. The entanglement is crucial for the ansatz to capture the
correlations present in the ground state of the Hamiltonian. The layers are repeated mul-
tiple times, each time with different variational parameters, to increase the expressivity of
the Ansatz. The depth of the ansatz, i.e., the number of layers, is a hyperparameter that
can be tuned to balance expressivity and efficiency. In the circuit below, as ean exam-
ple, entangling gates only act on nearest-neighbor qubits. Hence, a single layer can only
create entanglement between adjacent qubits. By repeating the layers, entanglement can
be spread across the entire system. If the ground state of the Hamiltonian is expected
to have long-range entanglement on the whole scale of the system size – typically called
volume-law entanglement – then an ansatz with only nearest-neighbor entanglement in a
single layer, should be repeated at least a number of times of the order of the system size,
to capture the long-range entanglement. Alternatively, one can use ansätze that create
long-range entanglement in a single layer, but this would come at the cost of increased
gate count and depth.

115 13.2 The Variational Quantum Eigensolver (VQE)

|0〉 Rz(θ0) Ry(θ8) Rz(θ16) Ry(θ24) Rz(θ32) Ry(θ40)

|0〉 Rz(θ1) Ry(θ9) Rz(θ17) Ry(θ25) Rz(θ33) Ry(θ41)

|0〉 Rz(θ2) Ry(θ10) Rz(θ18) Ry(θ26) Rz(θ34) Ry(θ42)

|0〉 Rz(θ3) Ry(θ11) Rz(θ19) Ry(θ27) Rz(θ35) Ry(θ43)

|0〉 Rz(θ4) Ry(θ12) Rz(θ20) Ry(θ28) Rz(θ36) Ry(θ44)

|0〉 Rz(θ5) Ry(θ13) Rz(θ21) Ry(θ29) Rz(θ37) Ry(θ45)

|0〉 Rz(θ6) Ry(θ14) Rz(θ22) Ry(θ30) Rz(θ38) Ry(θ46)

|0〉 Rz(θ7) Ry(θ15) Rz(θ23) Ry(θ31) Rz(θ39) Ry(θ47)

Figure 13.2: Example of a hardware-efficient ansatz for the VQE algorithm. The ansatz
consists of alternating layers of single-qubit rotations and entangling gates.

13.2.1 Energy Estimation

The energy E(θ) is estimated by measuring the expectation value of the Hamiltonian Ĥ.
We assume here that the Hamiltonian can be expressed as a sum of Pauli operators, i.e.,

Ĥ =
M∑
i

hiP̂i, (13.4)

where P̂i are tensor products of Pauli matrices, and hi are coefficients. The idea un-
derlying this assumption is that any Hermitian operator can be expressed as a linear
combination of Pauli operators, although in general the number of terms in the sum
scales exponentially with the number of qubits. Once the Pauli-sum expression has been
obtained, the energy can be computed as:

E(θ) =
M∑
i

hi〈Ψ(θ)|P̂i|Ψ(θ)〉. (13.5)

This requires measuring the expectation value of each Pauli operator P̂i on the quantum
device. The expectation value is estimated by performing measurements in the appropri-
ate basis and averaging the results over multiple shots to reduce statistical error. Notice
that, if the number of measurements required to reach a given statistical accuracy is N ,
then the total number of measurements required to estimate the energy is N times the
number of terms M in the Pauli-sum expression of the Hamiltonian, i.e., Nmeas = NM .
This can be a significant computational overhead, especially for large systems.

The main application of VQE is in quantum chemistry, where the Hamiltonian is typi-
cally expressed in terms of fermionic operators describing electrons occupying molecular
orbitals. There is a textbook procedure to map fermionic operators to qusums of Pauli
operators, which is based on the Jordan-Wigner or Bravyi-Kitaev transformations. The

Chapter 13: The Variational Quantum Eigensolver 116

resulting Hamiltonian however typically has a large number of terms, which can ap-
proach millions for molecules of practical interest. The number of terms can be reduced
by various techniques. An example is to group together terms that commute with each
other, and measure them simultaneously. This is a complex combinatorial problem and
sometimes the most advanced methods in approximately solving combinatorial problems
have been advocated to lower the computational overhead of VQE in quantum chamistry.
However, these techniques do not lead in general to a dramatic reduction of the number
of terms that must be measured independently, and the search for a randically different
variational approach to quantum chemistry is still ongoing.

13.2.2 The Optimization Process
The primary objective of the Variational Quantum Eigensolver (VQE) is to minimize the
energy E(θ) of the trial state |Ψ(θ)〉, as defined by:

E(θ) = 〈Ψ(θ)|Ĥ|Ψ(θ)〉. (13.6)

This optimization process is iterative and involves updating the variational parameters θ
based on the results of measurements performed on the quantum device. The workflow
is as follows:

1. Initialize the Parameters: Begin with an initial guess for θ.

2. Measure the Energy: Evaluate E(θ) using the quantum device.

3. Optimize the Parameters: Update θ using a classical optimization algorithm
to reduce E(θ).

4. Iterate Until Convergence: Repeat steps 2 and 3 until the energy converges to
a minimum.

There are two broad strategies to optimize the loss function: gradient-based optimization
and gradient-less optimization.

In gradient-based optimization, the parameters θ are updated iteratively in the direction
of the negative gradient of E(θ):

θ(k+1) = θ(k) − η∇E(θ(k)), (13.7)

where η > 0 is the learning rate, and ∇E(θ) is the gradient of the energy with respect to
the parameters. These approaches require estimating the gradient of the energy, which
can be challenging on quantum devices. Indeed, for most variational ansätze, the gradient
of the energy is not known analytically, and must be estimated using finite differences
or other techniques. This implies that not only one has to carry out a large number
of measurements to estimate the energy, but in principle also a much larger number
of measurements to estimate each component of the gradient. This can be a significant
computational overhead, especially for large systems. There are some techniques that can
be used to reduce the number of measurements required to estimate the gradient, such
as the stochastic gradient descent, which estimates only the derivative with respect to a
random subset of parameters at each gradient-descent step. However, these techniques
can introduce additional noise in the gradient estimation, which can affect the convergence
of the optimization process.

117 13.2 The Variational Quantum Eigensolver (VQE)

In hardware-efficient ansätze like the one illustrated above, the dependence on the angle θ
of each gate is of a specific form involving trigonometric functions. This allows for the use
of the parameter-shift rule to estimate the gradient of the energy. The parameter-shift
rule is a technique that removes the additional error introduced by finite differences in
the gradient estimation. The exact derivative of the energy with respect to a parameter
θ is given by:

∂E

∂θ
=

1

2

[
E(θ +

π

2
)− E(θ − π

2
)
]
. (13.8)

Notice that the parameter shift is not a small quantity, like it would be the case in
the usual finite difference calculation. This is due to the specific dependence of the
ansatz on trigonometric functions and eliminates the error due to the finite difference
approximation.

The drawbacks of gradient-based optimization are mostly of three kinds. First, the
possibility to get stuck in local minima of the landscape of the loss function. This is
partially avoided using advanced gradient-based techniques such as ADAM, which make
use of the past history of the minimization path in parameter space, and in particular
of the momentum of the motion along the landscape of the loss function. The second
drawback is obviously the significant overhead in the estimation of the gradient. The
third, and arguably the most important drawback, is the occurrence of barren plateaux.
Barren plateaux are regions of the parameter space where the gradient of the loss function
is very small, and the optimization process becomes very slow. Barren plateaux are a well-
known issue in the optimization of quantum circuits, and they become more pronounced
as the number of qubits increases. Some argue that barren plateaux are a universal
feature of the variational approach, as they would arise from the intrinsically exponential
complexity of computing a quantum state of a many-body system. Although this is a very
interesting hypothesis, it is not yet clear whether it is the case. An empirical observation
is that barren plateaux are much less pronounced in physically-motivated ansätze, which
are designed to capture the physics of the problem, and therefore have a landscape of the
loss function which is more adapted to the physically relevant regions of the Hilbert space.
Finally, the variational approach is also severely affected by noise, which can flatten the
landscape of the loss function, thus making gradient-based methods less effective, and
can introduce additional biases by actually modifying the location of the minimum of the
loss function.

Let us just mention an approach called Quantum Natural Gradient, which is a modi-
fication of the gradient descent update rule that incorporates the Quantum Geometric
Tensor (QGT), which provides information about the curvature of the parameter space.
The update rule becomes:

θ(k+1) = θ(k) − ηF−1∇E(θ(k)), (13.9)

where F is the QGT, capturing the geometry of the quantum state manifold. Here we
won’t discuss the details of this approach, and refer the interested reader to the literature.

Gradient-free methods provide alternatives to gradient-based techniques, especially when
gradients are difficult or costly to compute. These methods rely on direct evaluation of
the energy at many points in the parameter space to heuristically determine the optimal
parameters. More precisely, at each iteration these methods evaluate the energy at many
points and use a heuristic criterion to determine a new set of points for the next iteration,

Chapter 13: The Variational Quantum Eigensolver 118

which are more likely to be close to the actual minimum of the loss function. Among the
many gradient-free optimization methods, we can mention the Nelder-Mead optimization,
sometimes called the simplex method or amoeba method, and evolutionary algorithms
such as the genetic algorithm or the particle swarm optimization. Another, virtually
gradient-free optimization method for VQE, is the Simultaneous Perturbation Stochastic
Approximation (SPSA) algorithm. SPSA is a robust and efficient method that requires
only two energy evaluations per iteration, making it suitable for noisy quantum devices.
The SPSA algorithm is based on the simultaneous perturbation of all parameters, which
allows for a more efficient estimation of the gradient. The algorithm has been successfully
applied to various quantum optimization problems, including the VQE algorithm.

which is a direct search method that does not require the computation of the gradient,
and Bayesian optimization, which uses a probabilistic model to explore the parameter
space. The most popular gradient-free optimization method for VQE is the Simultaneous
Perturbation Stochastic Approximation (SPSA) algorithm. SPSA is a robust and efficient
method that requires only two energy evaluations per iteration, making it suitable for
noisy quantum devices. The SPSA algorithm is based on the simultaneous perturbation of
all parameters with a random small displacement of each parameter. One can show that
this approach provides an almost unbiased estimate of the gradient of the loss function.
More precisely, the SPSA algorithm estimates the gradient of the loss function as:

∂E

∂θj
≈ E(θ +∆)− E(θ −∆)

2∆j

, (13.10)

where ∆ is a random vector of random perturbations.

It is not within the scope of the present discussion to provide a detailed comparison of
the various optimization methods. The reader is encouraged to consult the literature for
a more in-depth analysis of the advantages and limitations of each approach. However, it
is important to note that the choice of optimization method can significantly impact the
convergence and performance of the VQE algorithm. The choice of optimization method
should be guided by the specific characteristics of the problem at hand, such as the
landscape of the loss function, the presence of noise, and the availability of computational
resources.

A considerable number of review articles exist on the VQE algorithm and its applications.
A non exhaustive list includes [4, 5, 6, 7, 8, 9, 10].

Chapter 14

The Quantum Approximate
Optimization Algorithm

14.1 Quantum Approximate Optimization Algorithm
The Quantum Approximate Optimization Algorithm (QAOA) was introduced in 2014 as
a VQA to solve combinatorial optimization problems with a variational approach on a
NISQ quantum computer.

Combinatorial optimization problems (COPs) are ubiquitous, and virtually any kind of
optimization problem in math, phys, eng, etc., can be reduced to one of these problems.

A general class of COP is the boolean satisfiability problem, or SAT, whereby if {xj}
are boolean variables and R(x1, x2, . . . , xn) a boolean formula, the problem consists in
determining if there exists a set of values TRUE/FALSE for x1, x2, . . . , xn such that
R = TRUE.

It is intuitive to understand how SAT enables the resolution of very many optimization
problems. This is also formally established by the Cook-Levin theorem, which was the 1st

proof of NP-completeness of a computational problem, proving that SAT is NP-complete.

As an example, a particular instance of SAT is the 3-SAT problem, where

R = R1 ∧R2 ∧ · · · ∧ Rm, (14.1)

Rj = yj1 ∨ yj2 ∨ yj3 , yjk ∈ {x1, . . . , xn, x̄1, . . . , x̄n}. (14.2)

Related to 3-SAT, and to its generalization, the k-SAT problem, is the MAX-SAT prob-
lem, where one tries to find the solution that maximizes the number of Rj = TRUE. This
is more of an optimization problem than a satisfiability problem and is NP-Hard. The
corresponding decision problem is NP-complete.

Another example of COP is the Traveling Salesman Problem, in which you have to find
the optimal route that touches on all cities in a map. The problem is NP-Hard and
the corresponding decision problem, in which you have to decide whether given a length
ℓ, the graph has a solution with a route of length at least ℓ, is NP-complete. Another
important example is the MAX-CUT problem, which we will introduce in a moment.

119

Chapter 14: The Quantum Approximate Optimization Algorithm 120

An important feature of all these problems is the fact that they can be mapped, more
or less efficiently, onto a classical Hamiltonian of interacting spins, often called an Ising
spin-glass (ISG) Hamiltonian1. An ISG Hamiltonian has the form

H(s1, s2, . . . , sN) = −
∑
i<j

Jijsisj −
N∑
i=1

hisi, (14.3)

where sj = ±1. The task of finding the classical ground state, that is, the configuration
of the sj’s that minimizes H, is known to be NP-Hard.

A very important development in the solution of these problems comes with the idea of
Quantum Adiabatic Optimization (QAO)2.

The idea of QAO is the following. Consider H not as a classical but as a quantum
Hamiltonian:

Hp = −
∑
i<j

JijZiZj −
N∑
i=1

hjZj. (14.4)

This represents the exact same problem, because Hp is diagonal (thus classical) in the
basis of eigenstates of Zj. We then introduce another Hamiltonian

H0 = −h0
N∑
i=1

Xj. (14.5)

This Hamiltonian is separable and therefore simple to solve. Each Xj has eigenstates |+〉
and |−〉, so that the lowest energy state is |+〉⊗N .

Now define the time-dependent Hamiltonian:

H(t) =

(
1− t

T

)
H0 +

t

T
Hc. (14.6)

At time t = 0, H(t) = H0, and at t = T , H(T) = Hc.

The idea of QAO is then to prepare a quantum system in the state |+〉⊗N at time t = 0,
set T large enough so that the dynamics is very slow, and let the system evolve until
t = T . If T is large enough, the system adiabatically stays in the ground state at all t
and ends up in the ground state of Hp which we are searching.

The choice of H0 ensures that |+〉⊗N has equal components on all states of the comp.
basis, so that QAO always works. It is also why we need quantum mechanics. The idea
is reminiscent of quantum parallelism. We start the annealing with a superposition of all
separable states. Then the quantum annealing protocol explores in parallel all solutions
of the classical problem.

1See arXiv:1302.5843 for a review.
2See arXiv:0801.2193 for a review.

121 14.2 QAOA on a digital quantum computer

14.2 QAOA on a digital quantum computer
QAO can be achieved by digital quantum computing. The time evolution associated to
H(t) is

U(t, 0) = T exp

(∫ t

0

H(t′)dt′
)
. (14.7)

Do not worry much about this expression. It is just the generalization of the time-
evolution operator to the case in which the Hamiltonian is time-dependent. Here we will
introduce a simplification consisting in approximating the Hamiltonian H(t) as piecewise
constant, i.e. time-independent on each short time interval ∆t. Notice that [H0, Hc] 6= 0.
We can divide the interval T into M steps ∆t = T

M
, then

U(T, 0) = U(T, T −∆t)U(T −∆t, T − 2∆t) . . . U(∆t, 0). (14.8)

Now, if ∆t is small, i.e., 〈H〉∆t � 1, the piecewise-constant approximation allows to
rewrite each time-evolution operator over an interval ∆t using the expression we have
introduced for time-independent Hamiltonians

U(T − k∆t, T − (k − 1)∆t) ≈ e−iH(k∆t)∆t. (14.9)

Let us also call H0(t) = (1− t
T
)H0 and Hc(t) =

t
T
Hc. The Trotter formula tells us that:

e−iH(k∆t)∆t ≈
(
e−iH0(k∆t)∆t/Me−iHc(k∆t)∆t/M

)M
. (14.10)

where the Trotter error is O
(

(∆t)2

M

)
. Both e−iH0t and e−iHct can be computed analytically

as a product of Pauli operators, and therefore translated directly into a quantum circuit.
If we execute the quantum circuit, at the output we will have (an approximation of) the
ground state of Hc, which is a state of the computational basis. One can then simply
read out the classical solution by measuring each qubit in the computational basis.

This seems to solve the problem! Where is the trick?

The issue hides in the adiabatic theorem, which states that the distance between the
actual state |ψ(T)〉 at the end of the evolution and the actual solution |ψ0〉 is bounded
by

‖|ψ(T)〉 − |ψ0〉‖ ≲
〈H〉
T∆2

, (14.11)

where ∆ is the minimal gap, defined as ∆ = E1 − E0, where E0 is the ground state
energy of H, and E1 is the next level energy. For systems of increasing size, ∆ can
decrease exponentially to zero, thus requiring a time window T very long for adiabatic
evolution.

Adiabatic means without transfer of energy. Any time-dependent term in a Hamiltonian
implies an exchange of energy. This is why one never gets to the true ground state |ψ0〉,
but to a state that has components on excited states |ψ1〉, etc. The transfer of energy in
this case is called the Landau-Zener transition.

One can show that the probability of having the ground state at T , PGS(T), obeys the
Landau-Zener formula

log (1− PGS(T)) ∝ −T∆2. (14.12)

Chapter 14: The Quantum Approximate Optimization Algorithm 122

There were several attempts at solving this issue. It turns out that a better strategy
consists in a diabatic time evolution. In simple terms, one adopts a short time T , but
chooses a non-uniform time evolution:

H(t) = (1− f(t))H0 + f(t)HC (14.13)

with the conditions f(0) = 0 and f(T) = 1.

In practice, one can parametrize the function f(t) with several parameters. Then, for a
given T , one runs the diabatic time evolution several times, by adjusting the parameters
each time (namely varying f(t)), to search for the minimum of the expectation value of
the energy E = 〈Ψ(T)|Hc|Ψ(T)〉.

This is exactly the idea at the basis of QAOA. It turns out that, by optimizing f(t), one
can achieve a dramatic improvement in the time T needed to achieve good convergence.

In the QAOA algorithm one has set of real-valued parameters

ξ⃗ = (γ⃗, β⃗) = (γ1, . . . , γp, β1, . . . , βp). (14.14)

. . .

. . .

. . .

|+〉

e−iγ1Hc

e−iβ1X1

e−iγ2Hc

e−iβ2X1

e−iγpHc

e−iβpX1

|+〉 e−iβ1X2 e−iβ2X2 e−iβpX2

|+〉 e−iβ1X3 e−iβ2X3 e−iβpX3

Figure 14.1: The quantum circuit of the QAOA algorithm

The quantum circuit is designed as follows

• The initial state is prepared in |+〉⊗N .

• The operators e−iγHc and e−iβH0 are applied alternately p times, with j = 1, . . . , p.

• The final state is measured to estimate E(ξ⃗) = 〈Hc〉. Hc is a sum of Pauli operators,
so it is straightforward to estimate.

Then (γ⃗, β⃗) are varied following a variational scheme. We can choose between gradient-
based methods, where the estimate of the gradient of the loss function instructs about
how to change the parameters, and gradient-less methods, where the minimum is searched
using some heuristic exploration of parameter space. The simplest example of gradient-
based method is the gradient descent. Assume that at iteration n the parameters are ξ⃗n.
Then at iteration n+ 1, the new parameters are computed as

ξ⃗n+1 = ξ⃗n − η∇E(ξ⃗)|ξ⃗=ξ⃗n . (14.15)

The gradient-based approaches may be very accurate if the starting point in parame-
ter space is reasonably close to the actual minimum. However, they require estimating
the gradient, which is not possible analytically and therefore requires to execute a large

123 14.3 Max-Cut

number of circuits and measurements to estimate each gradient component. Advanced
methods include the parameter-shift rule, stochastic gradient descent, or the simultane-
ous perturbation stochastic approximation. Gradient-less methods instead inlcude the
Nelder-Mead or simplex method, and more advanced approaches like e.g. genetic algo-
rithms. There is consensus that the overhead in the number of circuit measurements to
estimate the gradient, or to estimate the loss function in many points in parameter space
in gradient-less methods, is roughly the same. All these issues are discussed in great
detail in a recent review on QAOA.3

One can show that this approach can be traced back to the diabatic scheme by setting

f

(
ti =

i∑
j=1

(|γj|+ |βj|)−
1

2
(|γi|+ |βi|)

)
=

γi
|γi + βi|

, (14.16)

with

Tp =

p∑
i=1

(|γi|+ |βi|) . (14.17)

A key parameter is the number of cycles p. Differently from QAO, the QAOA generates
a monotonous variation of the quality of the result, which improves with increasing p,
because of the variational nature of the problem. It is established that, under reasonable
assumptions, QAOA cannot be efficiently simulated classically even for p = 1.

A final remark concerns the parameter optimization. We know that in the adiabatic
limit T → ∞ quantum annealing will lead to the optimal solution independently of the
annealing schedule, i.e. the particular form of f(t). This property reflects in the QAOA
algorithm. It has been demonstrated that, if a sufficiently large number of cycles p is
used, then there is an optimal set of parameters (γ⃗, β⃗) which leads to an approximate
optimal solution independently of the instance of the problem. Using this optimal set,
one can then avoid the optimization process. The issue is that the number of cycles p
required to achieve this optimization-less regime grows with the size of the problem, and
current NISQ architectures can’t execute very deep circuits because of the excessive noise
of current quantum hardware.

14.3 Max-Cut
A particular instance of QAOA is the solution of the Max-Cut problem. The Max-Cut
problem is defined on a graph as follows. Consider a graph as shown below,

1

2

3

4

5

w12

where, wij are weights and each node can take values ↑ or ↓, wij > 0.4 An edge contributes
with its weight wij only if nodes i and j are anti-aligned. The goal is to find a cut of

3K. Blekos et al., Physics Reports 1068, 1 (2024). https://arxiv.org/abs/2306.09198
4We show just the edge w12 to keep the figure uncluttered.

Chapter 14: The Quantum Approximate Optimization Algorithm 124

the graph (like the the dashed line) which maximizes the sum of the weights. As usual,
the decision problem “Is there a cut whose weight is ≥ K?” is NP-complete and the
corresponding optimization problem, “Find the best cut’’, is NP-Hard.

The problem is equivalent to maximizing the following Ising Hamiltonian

Hc =
∑
⟨i,j⟩

wij

(
I− ZiZj

2

)
. (14.18)

If we define the approximate ratio

r∗ =
〈Hc〉approx

〈Hc〉max
, (14.19)

then, even finite values of r∗ < 1 can be shown to be NP-Hard. Therefore, QAOA
provides an exp. speedup and may in the next future bring to another proof of quantum
supremacy.

Check out the Variational Quantum Factoring and its recent implementation on IBM
machines, which reduces the factoring problem to a QAOA instance with a 4-local spin
Ising model! (Please refer to arXiv:2012.07825).

Bibliography

[1] John Preskill. Lecture notes for physics 229: Quantum information and computa-
tion. http://theory.caltech.edu/~preskill/ph229/, 1998. California Institute
of Technology, Last accessed: September 6, 2024.

[2] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Infor-
mation. Cambridge University Press, Cambridge, 10th anniversary edition edition,
2010.

[3] Scott Aaronson. The complexity of quantum states and transformations: From
quantum money to black holes, 2016.

[4] Jules Tilly, Hongxiang Chen, Shuxiang Cao, Dario Picozzi, Kanav Setia, Ying Li,
Edward Grant, Leonard Wossnig, Ivan Rungger, George H. Booth, and Jonathan
Tennyson. The Variational Quantum Eigensolver: a review of methods and best
practices. Physics Reports, 986:1–128, November 2022. arXiv:2111.05176 [quant-
ph].

[5] M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo,
Keisuke Fujii, Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and
Patrick J. Coles. Variational quantum algorithms. Nature Reviews Physics, 3(9):625–
644, September 2021. Number: 9 Publisher: Nature Publishing Group.

[6] Dmitry A. Fedorov, Bo Peng, Niranjan Govind, and Yuri Alexeev. VQE Method: A
Short Survey and Recent Developments, August 2021. arXiv:2103.08505 [quant-ph].

[7] Yudong Cao, Jonathan Romero, Jonathan P. Olson, Matthias Degroote, Peter D.
Johnson, Mária Kieferová, Ian D. Kivlichan, Tim Menke, Borja Peropadre, Nicolas
P. D. Sawaya, Sukin Sim, Libor Veis, and Alán Aspuru-Guzik. Quantum Chem-
istry in the Age of Quantum Computing. Chemical Reviews, 119(19):10856–10915,
October 2019. arXiv:1812.09976 [quant-ph].

[8] Sukin Sim, Peter D. Johnson, and Alán Aspuru-Guzik. Expressibility and Entan-
gling Capability of Parameterized Quantum Circuits for Hybrid Quantum-Classical
Algorithms. Advanced Quantum Technologies, 2(12):1900070, 2019. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/qute.201900070.

[9] Han Qi, Sihui Xiao, Zhuo Liu, Changqing Gong, and Abdullah Gani. Variational
quantum algorithms: fundamental concepts, applications and challenges. Quantum
Information Processing, 23(6):224, June 2024.

125

http://theory.caltech.edu/~preskill/ph229/

Bibliography 126

[10] Sam McArdle, Suguru Endo, Alán Aspuru-Guzik, Simon C. Benjamin, and Xiao
Yuan. Quantum computational chemistry. Reviews of Modern Physics, 92(1):015003,
March 2020. Publisher: American Physical Society.

	Introduction
	A crash course on Quantum Mechanics
	States
	Measurements
	Time evolution
	Composite systems
	The Quantum Bit
	Pauli Basis
	The Bloch Sphere
	A brief discourse on measurement
	Multiple Qubits

	The paradigm of digital Quantum Computation
	Quantum gates
	Single-qubit gates
	Some useful theorems
	Quantum circuit notation
	Two-qubit gates
	Universal gates

	Quantum state preparation
	Bell states

	Readout
	Principle of deferred measurement
	Principle of implicit measurement

	Quantum Algorithms
	Quantum algorithms and quantum advantage
	The Deutsch algorithm
	The Deutsch-Jozsa algorithm

	Computational Complexity
	Computational complexity
	Classical computational complexity

	Classical deterministic complexity classes
	Tractability
	P
	NP
	NP-Complete
	NP-Hard

	Probabilistic computational complexity classes
	BPP
	MA
	Summary

	Quantum Computational Complexity
	BQP
	QMA

	Oracle separation
	Bernstein-Vazirani
	Simon's Algorithm

	Quantum Fourier Space
	The quantum Fourier transform
	The binarized decimal notation
	The QFT circuit

	Quantum phase estimation

	Shor's Factoring Algorithm
	Shor's Factoring Algorithm
	Order Finding
	Modular exponentiation
	Link Between Order Finding and Factoring
	The Algorithm is Then Simple
	Why the Algorithm Works

	Grover's Algorithm
	Grover's Quantum Search Algorithm
	The Algorithm
	Geometrical Interpretation of Grover's Algorithm
	Number of Applications and Probability Analysis

	Digital Quantum Simulation
	Time-Evolution Operator with Discretized Time Steps
	Zassenhaus Formula
	Suzuki-Trotter Decomposition
	Quantum Circuit Implementation

	The Density Operator Formalism
	The density operator formalism
	Time evolution of the density operator
	Noisy quantum channels

	Quantum Error Correction
	Quantum error correction
	Repetition codes
	Knill-Laflamme Theorem
	Proof and Discussion

	Bounds on the Parameters of a QECC
	The Stabilizer Formalism
	Steane code
	Calderbank-Shor-Steane code

	Fault Tolerant Quantum Computing
	Fault Tolerance
	Clifford group
	Gottesman-Knill Theorem
	Fault Tolerance in Gates, State Prep., and Measurement
	Transversal gates
	Quantum Threshold Theorems

	The Variational Quantum Eigensolver
	Variational Quantum Algorithms (VQA)
	The Variational Quantum Eigensolver (VQE)
	Energy Estimation
	The Optimization Process

	The Quantum Approximate Optimization Algorithm
	Quantum Approximate Optimization Algorithm
	QAOA on a digital quantum computer
	Max-Cut

